Каталог
  

Физические свойства графита


Графит и его свойства

Графит – уникальный самородный минерал, аллотропная модификация элемента углерода, наиболее устойчивая в земной коре. Свойства графита хорошо изучены и находят широкое применение. Образуется графит в результате вулканической деятельности при высоких температурах, поэтому и находят его в природе в магматических горных породах, где содержание кристаллического графита может доходить до 50%. Встречается графит также совместно с вольфрамитом - в кварценосных жилах, совместно с другими минералами – в полиметаллических среднетемпературных месторождениях, а в таких метаморфических породах, как мраморы, гнейсы, сланцы, графит распространен очень широко. Крупное графитовое месторождение находится в Тунгусском каменноугольном бассейне, образовавшееся в результате высокотемпературного воздействия на уголь – так называемая скрытокристаллическая форма графита, содержание которого лежит в пределах от 60 до 80%.

Структура графита

В кристаллической структуре графита различаются две ее модификации: гексагональную, или а-модификцию, и ромбоэдрическую, или β-модификацию. В альфа-графите каждый атом углерода связан с тремя соседними атомами sp-3-гибридными облаками, образуя кристаллический слой, состоящий из правильных шестигранников. Каждый слой удерживается с другим, параллельным ему слоем, за счет ван-дер-вальсовских сил. Причем, центры шестигранников верхнего и каждого нижнего слоев совпадают, однако слои смещены относительно друг друга на 0,1418 нм в горизонтальном направлении и в порядке «через один». Слоистая структура объясняет многие свойства графита.

В бетта-графите атомы слоев связаны между собой точно так же, но чередование горизонтального смещения происходит через два слоя. Ромбоэдрическая структура считается нестабильной, разрушающейся при температуре более 2230о, но в природных графитах с гексагональной структурой встречается до 30% β-модификации графита.

Физические свойства графита

Цвет графита варьирует от железо-черного до стального серого с характерным металлическим блеском. На ощупь минерал жирный, скользкий, пачкает пальцы и бумагу, при механическом воздействии расслаивается на отдельные чешуйчатые частицы. Именно это свойство графита позволяет применять его в карандашах.

По сравнению с алмазом графит обладает меньшей твердостью и плотностью, а также графит электропроводен. Его теплопроводность зависит от степени нагрева и колеблется в пределах от 278,4 до 2435 Вт/(м*К).

Графит обладает чрезвычайной огнеупорностью, его температура сгорания - 38500С.

Химические свойства графита

Графит химически малоактивен: в кислотах не растворяется, с некоторыми солями и щелочными металлами образует соединения наподобие включений. С кислородом воздуха реагирует только при очень высокой температуре, образуя углекислый газ. Возможно фторирование графита с образованием (CF)x.

Применение графита

Техническое применение минерала чрезвычайно разнообразно и обусловлено свойствами графита, главным образом его огнеупорностью и электропроводностью. Так, в металлургии графит используется для производства тугоплавких тиглей, чехлов для термопар, емкостей для кристаллизации. В литейном производстве графитовый порошок используется в качестве антипригарной присыпки, а также для смазывания литейных форм.

Из коллоидно-графитовых смесей таких как графит С-1 изготавливают шлифовальные и полировочные пасты.

Хорошие электропроводящие свойства графита позволяют использовать его для производства электродов и контактов некоторых электрических приборов. Кроме производства карандашей, графит используется для изготовления красок и термостойких смазочных материалов, для наполнения пластмасс.

Даже в атомной энергетике замечательные свойства графита находят свое применение, в первую очередь, это его способность замедлять электроны в реакторах. В ракетостроении сопла ракетных двигателей и многие элементы теплозащиты также производятся с применением графита.

sait-sovetov.net

Графит

  Графит — минерал из класса самородных элементов, одна из аллотропных модификаций углерода. Распространенный в природе минерал. Встречается обычно в виде отдельных чешуек, пластинок и скоплений, разных по величине и содержанию графита. Различают месторождения кристаллического графита, связанного с магматическими горными породами или кристаллическими сланцами, и скрытокристаллического графита, образовавшегося при метаморфизме углей.  

СТРУКТУРА

Гексагональная кристаллическая полиморфная (аллотропная) модификация чистого углерода, наиболее устойчивая в условиях земной коры. Слои кристаллической решетки могут по-разному располагаться относительно друг друга, образуя целый ряд политипов, с симметрией от гексагональной сингонии (дигексагонально-дипирамидальный вид симметрии), до тригональной (дитригонально-скаленоэдрический в.с.). Кристаллическая решетка графита — слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α

Различают две модификации графита: α-графит (гексагональный P63/mmc) и β-графит (ромбоэдрический R(-3)m). Различаются упаковкой слоёв. У α-графита половина атомов каждого слоя располагается над и под центрами шестиугольника (укладка …АВАВАВА…), а у β-графита каждый четвёртый слой повторяет первый. Ромбоэдрический графит удобно представлять в гексагональных осях, чтобы показать его слоистую структуру.

β-графит в чистом виде не наблюдается, так как является метастабильной фазой. Однако, в природных графитах содержание ромбоэдрической фазы может достигать 30 %. При температуре 2500-3300 К ромбоэдрический графит полностью переходит в гексагональный.

СВОЙСТВА

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1 по шкале Мооса). Относительно мягкий. После воздействия высоких температур становится немного твёрже, и становится очень хрупким. Плотность 2,08—2,23 г/см³. Цвет тёмно-серый, блеск металлический. Неплавкий, устойчив при нагревании в отсутствие воздуха. Жирный (скользкий) на ощупь. Природный графит содержит 10—12 % примесей глин и окислов железа. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах).

Теплопроводность графита от 278,4 до 2435 Вт/(м*К), зависит от марки графита, от направления относительно базисных плоскостей и от температуры.

Электрическая проводимость монокристаллов графита анизотропна, в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном — в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300—1300 К, причём положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Коэффициент теплового расширения графита до 700 К отрицателен в направлении базисных плоскостей (графит сжимается при нагревании), его абсолютное значение с повышением температуры уменьшается. Выше 700 К коэффициент теплового расширения становится положительным. В направлении, перпендикулярном базисным плоскостям, коэффициент теплового расширения положителен, практически не зависит от температуры и более чем в 20 раз выше среднего абсолютного значения для базисных плоскостей.

Монокристаллы графита диамагнитны, магнитная восприимчивость незначительна в базисной плоскости и велика в ортогональных базисным плоскостях. Коэффициента Холла меняется с положительного на отрицательный при 2400 К.

МОРФОЛОГИЯ

Хорошо образованные кристаллы редки. Кристаллы пластинчатые, чешуйчатые, кривогранные, обычно имеют пластинчатую несовершенную форму. Чаще бывает представлен листочками без кристаллографических очертаний и их агрегатами. Образует сплошные скрытокристаллические, листоватые или округлые радиально-лучистые агрегаты, реже — сферолитовые агрегаты концентрически-зонального строения. У крупнокристаллических выделений часто наблюдается треугольная штриховка на плоскостях (0001).

ПРОИСХОЖДЕНИЕ

Образуется при высокой температуре в вулканических и магматических горных породах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и др. минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространён в метаморфических породах — кристаллических сланцах, гнейсах, мраморах. Крупные залежи образуются в результате пиролиза каменного угля под воздействием траппов на каменноугольные отложения (Тунгусский бассейн). Акцессорный минерал метеоритов. Сопутствующие минералы: кварц, пирит, гранаты, шпинель.

ПРИМЕНЕНИЕ

Для изготовления плавильных тиглей, футеровочных плит — применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов. Применяется в электродах, нагревательных элементах — благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).

Для получения химически активных металлов методом электролиза расплавленных соединений, твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках, наполнитель пластмасс.

Является замедлителем нейтронов в ядерных реакторах, компонентом состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином). Используется для получения синтетических алмазов, в качестве эталона длины нанометрового диапазона для калибровки сканеров сканирующего туннельного микроскопа и атомно-силового микроскопа, для изготовления контактных щёток и токосъёмников для разнообразных электрических машин, электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов, а также прочих устройств, где требуется надёжный подвижный электрический контакт, для изготовления тепловой защиты носовой части боеголовок баллистических ракет и возвращаемых космических аппаратов.

Графит (англ. Graphite) — C

КЛАССИФИКАЦИЯ

ФИЗИЧЕСКИЕ СВОЙСТВА

ОПТИЧЕСКИЕ СВОЙСТВА

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

mineralpro.ru

Природный графит: структура, свойства и сферы применения породы

Углерод формирует множество самородных элементов, которые имеют свою структуру. Одним из таких элементов является графит. Это распространённый материал в природе, который встречается в виде чешуек и пластинок. Скопления его отличаются по величине и содержанию материала. Кристаллические сланцы или магматическая порода — это места залегания. Часто он образовывается при метаморфическом воздействии на уголь.

Происхождение вещества

Графит чаще всего образуется от воздействия большой температуры и давления в осадочных породах — в каменном угле и битумах. Этот процесс называют метаморфизмом. В некоторых случаях материал образовывается в процессе кристаллизации. Как правило, возникает из магмы, которая богата углеродом. Иногда образуется из известняка, который был захвачен магмой.

Места образования:

  • При высокотемпературном воздействии на породу в вулканических и магматических слоях.
  • В среднетемпературных месторождениях с полиметаллами.
  • В кристаллических сланцах, мраморах, гнейсах.
  • При пиролизе каменного угля. При этом траппы должны воздействовать на отложения каменного угля.
  • Как сопутствующий материал в метеоритах. С ним же находятся кварц, пирит и шпинель.

В процессе кристаллизации порода получается в редких случаях. Да и практическое значение имеет порода, которая возникла метаморфическим путём. Небольшие вкрапления в породах метеоритов интересны учёным, но не промышленности.

Описание структуры

Химический состав графита — это атомы углерода, которые связаны между собой ковалентно. То есть один атом перекрывает электронное облака трёх других атомов, которые окружают его. Атомы состоят в прочной связи. В минерале наблюдается незначительная примесь иных компонентов Различают 2 вида графита:

  1. Альфа (гексагональный).
  2. Бета (ромбоэдрический).
Читайте также:  Роговая обманка, характеристика и особенности минерала

Между собой виды отличаются упаковкой слоёв. У вида альфа атомы имеют укладку типа ABABABA. То есть укладка в виде шестиугольника, но между слоями крайне слабая связь. Структура графита такова, что он легко ломается по слоям.

У вида бета каждый четвёртый слой повторяет первый. Получается своеобразная ромбоэдрическая связь. Бета-графит в чистом виде не существует — это метастабильная фаза. Природные породы материала имеют до 30% в своём составе эту фазу. При температуре около 2,5 тыс. Кельвинов происходит полная трансформация ромбоэдрической структуры в гексагональную.

Химические и физические свойства

Материал имеет одинаковый состав с алмазом, но свойства различаются кардинально. Виной всему разница в атомных связях. После закаливания в печи при высокой температуре твёрдость графита увеличивается, но растёт и хрупкость. Это качество используют для создания искусственных алмазов.

Таблица характеристик:

СвойствоОписание
Атомная решёткаГексагонального типа
Светопропускная способностьОтсутствует
Проводимость электротокаХорошая
Атомные связиПлоскостные
СтруктураСлоистая
Температура плавления3,7 тыс. градусов по Цельсию
ЦветОт чёрного к серому, с металлическим блеском

Порода не плавится. При достижении критической температуры кристаллическая решётка начинает разрушаться. На ощупь порода скользкая, жирная. При трении раскалывается на небольшие чешуйки, которые остаются на поверхности. Эта характеристика позволяет использовать минерал для ведения записей.

Промышленное и бытовое применение

Графит широкого используют в промышленности. Большинству отраслей необходим этот материал в чистом виде или же с добавлением. Список того, что делают из графита, огромен: начиная от карандашей и огнеупорного покрытия, оканчивая стержнями для атомных реакторов и смазкой.

Сферы применения:

  • Металлургия. Производство огнеупорных тиглей, а также для нанесения защитного покрытия на литейные форму. Свойства графита позволяют не пригорать формовочной земле. Графит имеет химическую стойкость к ряду расплавленных металлов. К тому же материал стойкий к высокотемпературному воздействию при отсутствии кислорода.
  • Электропромышленность. Создание электродов и дуговых углей требует добавления материала. Имеет хорошую электропроводность и химическую стойкость к любому водному раствору. Хорошие электропроводящие свойства материала также используют для создания токопроводящего клея.
  • Химическая промышленность. Для создания смазочных веществ, которые работают в среде с высокой температурой. А также добавляют материал при производстве краски для типографий и китайской туши. Используют в качестве наполнителя пластмасс.
  • Атомная промышленность использует графитовые стержни для регулирования ядерной реакции в реакторах. Графит выступает в качестве замедлителя нейтронов.
  • Машиностроение. Обволакивание штампов прессовальных машин обеспечивает высокое качество изготовления заготовок из стали. Заготовки в последующем не нужно шлифовать.
  • Для производства синтетических алмазов.

Пищевая отрасль — это ещё одна сфера где используется графит, пусть и в связанном виде. Но перед использованием компонент проходит определённую обработку. Железо, этиловый спирт, графит и сахар имеют разную плотность. Но рассматриваемое вещество может входить в состав других пищевых продуктов. Он встречается в эфирах, спирте и сахаре.

Читайте также:  Характеристика и химическая формула мрамора

Несложный опыт с сахаром показывает содержание в нём графита. Для этого кубик сахара кладут на крышку и накрывают колпачком. Снизу крышку греют на огне до тех пор, пока из-под колпачка не начнёт выделяться дым. Если к нему поднести источник огня, то дым загорится. После окончания выделения газа огонь снизу крышки тушат. На крышке будет находиться чёрная масса углерода.

Добыча ископаемого

Китай является ведущим экспортёром минерала. Страна поставляет до 70% мирового объёма. И китайцы не собираются останавливаться на этом результате, поскольку производители расширяют связи с западными компаниями. Последние выступают потребителями.

Канада, Бразилия, Мексика и Шри-Ланка — это остальные мировые лидеры производства минерала. Эти страны добывают 8−12% мирового объёма. В Российской Федерации запасы графита составляют порядка 13 млн тонн. Значительная часть запасов сосредоточена в Сибири. Более 75% отечественных запасов — это бедная руда, которая содержит не более 6% минерала. Отечественные балансовые запасы требуют переоценки, поскольку некоторую их часть нецелесообразно разрабатывать из-за низкого качества руды. Расположение на природоохранных территориях тоже накладывает ограничения к разработке рудников.

Более половины добываемого материала потребляют США, Япония, Германия и Китай. Стоимость графита на рынке определяют по его кристаллу и содержанию в нём углерода. Средняя цена порядка 0,75 центов на 1 кг материала. Месторасположение производителя тоже влияет на стоимость.

kamen.guru

Графит: его свойства

[содержание]

Такой распространенный химический элемент, как углерод, встречается в природе в виде двух полиморфных разновидностей. Эти разновидности – графит и алмаз. Хотя формулы графита и алмаза идентичны, и они являются природными проявлениями одного и того же химического элемента, они довольно резко отличаются по своим физическим свойствам и структуре.

Графит — камень, который используют в промышленности

Такие различия обусловлены особенностями строения кристаллической решетки графита. Наличие свободных электронов, которые имеет кристаллическая решетка графита, обуславливает его физические свойства.

Свойства графита

Природный графит представляет собой серое вещество, имеющее слабый металлический блеск. Он имеет высокую степень теплопроводности, которая составляет около 3,55 Вт/град/см. Этот показатель в несколько раз выше, нежели у простого глиняного кирпича. Такая высокая теплопроводность объясняется присутствием в его кристаллической решетке подвижных электронов.

Подвижные электроны обуславливают не только высокую теплопроводность элемента, но и такое физическое свойство, как высокая электропроводимость. Удельное сопротивление материала электрическому току составляет от 0,4 до 0,6 Ом. Такой низкий предел электрической сопротивляемости характерен для всех видов и агрегатных состояний, которые он имеет.

Если рассматривать его химические свойства, то он является инертным и неспособен растворяться в химически активных растворах. Его полное растворение может происходить только в металлах, имеющих высокую точку плавления. При этом процессе образуются карбиды. Такие химические соединения имеют очень разнообразные химические и физические свойства, которые используются для производства современных твердосплавных материалов.

Карбиды являются основой для производства всех твердых сплавов, которые известны на сегодняшний день. Наиболее часто используются соединения углерода с вольфрамом и титаном. Их применение дает возможность для производства режущего инструмента, который обладает такими эксплуатационными характеристиками, как термическая устойчивость и износостойкость.

Низкий коэффициент трения и устойчивость к действию высоких температур делает его незаменимым материалом для производства изделий, основной функциональной задачей которых является обеспечение герметичности различных соединений. Подобные изделия из графита позволяют изготавливать качественные уплотнительные материалы без применения смол и различных неорганических наполнителей.

Для этих целей промышленностью выпускается терморасширенный графит. Для его производства используется природный чешуйчатый графит, который обрабатывается неорганическими кислотами. В результате обработки природного чешуйчатого варианта материала получается эластичный и химически инертный образец, используемый для производства набивок и смазок, используемых для герметизации соединений.

Учитывая то, что аллотропная форма углерода характеризуется определенной кристаллической решеткой, он имеет следующие структурные формы:

  • Явнокристаллические
  • Скрытокристаллические
  • Высокодисперсные материалы, называемые углями

Существует классификация, которая разделяет природные графиты по структуре и размерам кристаллов:

  • Плотнокристаллические графиты
  • Чешуйчатые графиты

Искусственный и природный варианты

Скопления этого минерала, которые имеют промышленное значение, находятся в Китае, Корее, Индии и Бразилии. Эти страны являются основными поставщиками природного графита на мировой рынок. Залежи графита разрабатываются на Украине, в России, Чехии. В связи с большой потребностью в данном минерале его природные месторождения неспособны удовлетворить возрастающую популярность.

Природный вариант этого минерала представляет собой черный порошок, имеющий серебристый оттенок

Преимуществом графита, который получают искусственным путем, является его химическая чистота. Содержание углерода в нем составляет 99%. Наибольшая плотность графита наблюдается в рекристаллизованных вариантах. Этот вариант производится путем термомеханических и термохимических обработок. Благодаря таким способам обработки значительно повышаются показатели плотности. Этот показатель крайне важен для теплопроводности материалов.

Из искусственных вариантов этого материала нужно выделить силицированный графит. Этот современный материал получают путем пропитывания пористого графита кремнием. Процесс пропитки производится под действием высокой температуры и давления. В результате такой обработки получается материал, обладающий высокой степенью износостойкости.

Основным достоинством этого материала является низкий коэффициент трения. Этот искусственный вариант используется для производства деталей, работающих при воздействии больших температур, когда не требуется высокая механическая прочность и твердость.

Еще одной разновидностью данного минерала является изостатический графит, получаемый в результате прессования при больших температурах. Основное применение этой разновидности лежит в изготовлении литейных форм. Ее также применяют для производства приборов для нагревания.

Сопротивление при механической резке у этого материала в несколько раз ниже, чем у стали и чугуна. Поэтому изготовление деталей из изостатического графита обходится намного дешевле, чем изготовление аналогичных деталей из других материалов. При этом эксплуатационные характеристики изостатического графита в несколько раз превышают аналоги, которые изготовлены из альтернативных материалов.

Каждая отрасль современной промышленности, которая потребляет этот минерал в качестве исходного сырья для производства определенных изделий, выдвигает свои требования к качеству графита. Поэтому современная промышленность производит достаточно большую номенклатуру сырья на его основе в зависимости от потребностей заказчиков.

Основные сферы применения

Высокая стойкость к температуре, которую имеет природный углерод, обуславливает его основную сферу применения. Это изделия, которые работают в условиях высокой температуры окружающей среды. Например, из них делаются формы, в которых производится закалка различных инструментов.

Графит является основным материалом для производства качественных гальванических элементов

Природный минерал и препараты, его содержащие, являются основой для таких изделий, как формы для литья, огнеупорные лакокрасочные материалы, смазки для подшипников качения и пр.

При изготовлении электродов с положительным зарядом он способствует улучшению электропроводности. Химическая инертность минерала делает его идеальным сырьем для материалов, которые работают в агрессивных средах.

Материалы, изготовленные на его основе, способны без изменения эксплуатационных характеристик работать в тех сферах, где не могут работать другие конструкционные материалы.

Основные марки

Существует следующая классификация марок этого материала:

  • Тигельный
  • Литейный
  • Элементный
  • Карандашный
  • Электроугольный
  • Аккумуляторный

Каждая из этих марок отличается процентным содержанием чистого углерода. Современная промышленность выпускает на основе графита такой инновационный материал, как стеклоуглерод. Этот материал обладает практически нулевой пористостью. Этот показатель крайне важен для эксплуатационных характеристик.

Основная сфера применения лежит в изготовлении химически стойкой посуды. Он способен выдерживать температуры до 3000 градусов. Причем такую температуру он способен выдерживать как в условиях вакуума, так и в условиях агрессивной окружающей среды.

В последнее десятилетие интерес к этому минералу значительно возрос. На основе волокон углерода производятся следующие виды современных материалов:

  • Углеродные волокнистые материалы
  • Углеродные волокнистые сорбенты
  • Углепластики
  • Композиционные материалы на основе углеродного волокна

Особое внимание уделяется использованию углепластиков, которые находят все более широкое применение в машиностроении, химической промышленности и во многих других сферах. Их применяют в качестве альтернативы металлическим изделиям. По прочности они не уступают изделиям из металла, а вот по таким параметрам, как коррозионная стойкость и стойкость к высоким температурам, значительно их превосходят.

prostokamni.ru


Смотрите также