Каталог
  

Физические свойства латуни


Физические свойства латуни, ее плотность и применение

Из сплава меди и цинка производят сплав, который получил название латунь. При этом от процентного соотношения этих чистых металлов изменяются многие свойства сплава, например, плотность латуни, ее пластичность, электропроводность и другие. Помимо основных металлов, в состав сплава входят другие элементы, влияющие на получение специальных свойств латуни, необходимых для конкретного применения.

Историческая справка

Согласно историческим сведениям, первыми металлами, которые использовал человек, были медь и золото. Оба металла являются очень мягкими в чистом состоянии, поэтому их использование в жизнедеятельности человека является достаточно ограниченным. В частности, медь использовалась древними людьми с момента начала использования ими огня, а со времен Римской империи этот металл стал более интенсивно применяться в изготовлении труб, военного оружия, украшений для статуй и для других целей.

Для улучшения характеристик чистых металлов, например, большей твердости и прочности, со временем человеку пришла мысль смешивать их. Так, приблизительно в 3500 году до нашей эры в Месопотамии получили бронзу — сплав меди с оловом, который обладал высокой сопротивляемостью к коррозии и был более прочной, чем каждый чистый металл по отдельности. Благодаря этим свойствам бронзу стали использовать для производства оружия и орудий труда.

Около 1400 года до нашей эры была открыта латунь — сплав цинка и меди, который демонстрировал великолепную устойчивость против деформации, обладал высокой пластичностью при низких и высоких температурах и имел высокую устойчивость к коррозии и механическому износу. Однако ее использование приобрело массовый характер только в 250 году до нашей эры с началом производства монет в Римской империи.

С этого времени применение латуни стало осуществляться в самых различных областях человеческой деятельности начиная от вооружения и заканчивая ювелирными украшениями. В XV веке она стала использоваться для производства астрономических инструментов, а с появлением печати сплав стал активно применяться в типографии. С середины XVI века в Европе болты и гайки изготавливались главным образом из латуни, меди и бронзы. Этот сплав использовали для изготовления шестерен часовых механизмов, а в XVII веке в Голландии латунь использовали для изготовления оптического телескопа.

Состав и свойства сплава

Пропорции металлов в сплаве могу широко варьироваться, что влияет на создание материала с нужными свойствами. В индустриальных сплавах процентное содержание цинка всегда ниже 50%. Состав определяет следующие свойства материала:

  • плавкость;
  • способность к формовке;
  • ковкость;
  • способность к штамповке;
  • способность к механической обработке.

При низких температурах из латуни можно делать листы различной толщины либо вытягивать проволоку. Плотность латуни и температура плавления также зависят от состава. В общем случае удельный вес латуни меняется от 8,4 г/см3 до 8,7 г/см3, а точка плавления находится между температурами 900 °C и 940 °C.

Чистая медь имеет плотность 8,96 г/см3 и температуру плавления 1084 °C, а чистый цинк обладает плотностью 7,14 г/см3 и температурой плавления 420 °C, то есть эти два свойства латуни близки к свойствам меди, ввиду ее большего относительного количества в сплаве в сравнении с цинком.

Главным образом изделия из латуни используются в качестве декоративных украшений благодаря их внешнему виду и блеску, похожему на золото. Также используют этот сплав в устройствах, в которых требуется небольшое трение между рабочими деталями, например, в замках и различных вентилях. Находит сплав и свое применение в электрических приборах, а также благодаря своим акустическим свойствам он применяется в изготовлении некоторых музыкальных инструментов таких, как трубы и колокольчики.

Человечество знакомо с латунью с доисторических времен, еще до открытия самого цинка. Изначально этот сплав получали путем смешивания меди и минерала гемиморфита, который является естественным источником цинка. Шахта по добыче гемиморфита была открыта в одной из деревень современной Германии. Эта шахта функционировала во времена Римской империи. В процессе смешивания меди и гемиморфита при высокой температуре цинк выделяется из этого минерала и сплавляется с медью.

Физические свойства латуни включают в себя следующие характеристики:

  • способность подвергаться механической обработке как при низких, так и при высоких температурах;
  • высокая сопротивляемость процессам окисления и коррозии, даже в условиях агрессивных сред;
  • высокая износоустойчивость;
  • высокая электропроводность;
  • пригодность для многоразовой переработки;
  • способность сохранять свои свойства при воздействии высоких температур.

Виды латуни

Виды латуни отличаются друг от друга различным содержанием цинка в составе. В зависимости от процентного содержания цинка в сплаве различают три основные группы:

  • Первая группа с процентным содержанием цинка меньше 34%.
  • Вторая группа с процентным содержанием цинка от 33 до 44%.
  • Сплавы третьей группы содержат больше 42% цинка и имеют ограниченное применение.

Классификация сплавов

Согласно такому делению на группы в зависимости от содержания цинка, вводят следующую классификацию обычных латуней:

  • Красные сплавы. В основном они используются в ювелирной промышленности благодаря внешнему виду (латунь может выглядеть как золото). Материал с 10% цинка подобен бронзе, поэтому используется в качестве ее имитации; 15% цинка придает материалу красноватый цвет, этот сплав используется в радиаторах автомобилей; сплав с 20% цинка обладает хорошей вытяжкой, поэтому используется для изготовления труб.
  • Желтые материалы. Цинка в них содержится от 25% до 35%. Применяются в основном для гильз и рессор.
  • Альфа-бета латуни с соотношением цинка от 36 до 42%. Они менее податливы, чем красные и желтые латуни, поэтому их не используют для изготовления пластин при низких температурах. Механическую обработку альфа-бета сплавы проходят при высоких температурах, поэтому в XIX использовались для некоторых корабельных конструкций.

Некоторые сплавы получили название специальных, например, сплав «симилор». Симилор состоит из 80% меди и 20% цинка. Другими специальными материалами являются «металл принца Альберта» (меди 86%, цинка 14%), «крисокола» (82% меди, 6% цинка, 6% олова).

Помимо основных элементов, в состав латуней входят другие элементы в минимальных количествах, поэтому эти сплавы являются податливыми и пластичными при низких температурах, а некоторые материалы не являются пластичными ни при каких температурах. Все типы этого материала становятся хрупкими вблизи температуры плавления.

Благодаря входящему в состав цинку, латунь является более твердой, чем чистая медь. В то же время сплав легче обрабатывать на различных механических станках, легче чеканить и выплавлять изделия. Также сплав устойчив к процессу окисления в условиях солевой среды, а его пластичность позволяет изготавливать тонкие металлические листы. Пластичность зависит от трех факторов: температуры, структуры и состава, причем даже минимальные количества других элементов могут значительно изменить это физическое свойство сплава.

Способность к механической обработке латуни значительно повышается, если в нее добавить небольшое количество свинца. Этот элемент практически не растворяется в ней и образует глобулярные частицы, которые значительно облегчают процесс механической обработки. Кроме того, свинец является хорошей смазкой из-за низкой температуры плавления, этот факт значительно снижает износ режущего инструмента при обработке материала. Латунь практически не подвергается термической обработке, для нее используют лишь процессы рекристаллизации и гомогенизационного отжига.

Специальные материалы

Специальными латунями считаются материалы, в которые, помимо меди и цинка, добавляют другие элементы в небольшом количестве с целью придания им соответствующих свойств. Самыми распространенными специальными латунями являются следующие:

  • с добавкой алюминия;
  • добавка железа увеличивает твердость и жесткость сплава по сравнению со стандартной латунью;
  • добавка свинца придает материалу механическую сопротивляемость и увеличивает способность к обработке;
  • добавка марганца увеличивает прочность материала и снижает его ковкость и тягучесть;
  • добавка олова придает прочность материалу при вытяжке, одновременно повышая его коррозионную стойкость. В данном случае существует два известных сплава: «металл адмирал», который обладает высокой стойкостью к коррозии, поэтому используется в качестве труб конденсаторов; «морская латунь» — содержит в своем составе 40% цинка и широко используется в сладкой и соленой воде;
  • добавка кремния (так называемый бронсил) повышает коррозионную стойкость и используется при изготовлении вентилей, насосов и шестерен;
  • сложная латунь с добавлением различных элементов, что придает ей высокую стойкость к окислению и кавитации, поэтому она входит в состав винтов кораблей.

Области применения

Использование латуни охватывает самые разнообразные сферы человеческой деятельности. Так, золотистый цвет сплава обусловил его использование в бижутерии и в различных декоративных элементах. Также его используют в котельном деле, при производстве военного снаряжения и амуниции, при изготовлении проволок и труб конденсаторов, электрических терминалов и денежных монет.

Благодаря устойчивости к разрушению в соленой воде металл используется при изготовлении снаряжения различных морских судов, а его акустические свойства позволяют делать духовые инструменты: трубы и аккордеоны. Благодаря бактерицидным свойствам, сплав используется для изготовления дверных ручек в больницах и госпиталях.

Если говорить о применении в качестве декора, то следует выделить производство ламп, светильников, карнизов и некоторых ювелирных изделий. Такого рода вещи производятся в основном в странах восточной Европы, на территории стран СНГ, а также во многих арабских и некоторых государствах Азии.

Одно из интересных свойств латуни, которое является необычным для металлов, заключается в отсутствии искр при механическом воздействии на изделие. Эта уникальная характеристика дает возможность использовать материал в качестве сосудов для хранения и транспортировки легковоспламеняющихся жидкостей.

Благодаря легкости механической обработки, высокой износостойкости и невысокой цене, материал используется для изготовления разнообразных вентилей. Из-за высокой сопротивляемости коррозии и кавитации используется латунь для изготовления винтов судов. Также материал использует при производстве некоторых деталей современных компьютеров.

obrabotkametalla.info

Плотность латуни, значение и примеры

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?! Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Латунь легко поддается свариванию, полировке и прокатке. В случае, если поверхность изделия из латуни предварительно не покрыть лаком, она чернеет на воздухе, несмотря на то, что в общем и целом лучше сопротивляется атмосферному воздействию, чем чистая медь.

Рис. 1. Латунь. Внешний вид.

Различают простые и специальные латуни. В состав последних, кроме меди и цинка, входят другие элементы, например железо, алюминий, олово, кремний. Латуни находят разнообразное применение. Из них изготовляют трубы для конденсаторов и радиаторов, детали механизмов, в частности часовых. Некоторые специальные латуни обладают высокой коррозионной стойкостью в морской воде и применяются в судостроении. Латунь с высоким содержанием меди – томпак – благодаря своему внешнему сходству с золотом используется для ювелирных и декоративных изделий.

Важнейшие характеристики латуни приведены в таблице ниже.

Таблица 1. Физические свойства и плотность латуни.

Плотность, кг/м3

8300 – 8700

Температура плавления, oС

880 – 950

Удельная теплоемкость (20oС) кДж×кг-1×К-1

0,337

Удельное электрическое сопротивление, Ом×м

(0,07 – 0,08)×10-6

Примеры решения задач

Понравился сайт? Расскажи друзьям!

ru.solverbook.com

Физические свойства латуни.

Плотность латуни лежит (в зависимости от ее химического состава в следующем диапазоне – 8,3 – 8,7 г/см3.

Температура плавления латуни в зависимости от химического состава составляет 880 – 9500 С. С увеличением содержания цинка температура плавления понижается.

Удельная теплоемкость латуни при температуре 200 С равна 0,377 кДж/кг . К, удельное электрическое сопротивление – (0,07 – 0,08) мкОм / м, т.е.примерно в 2,5 раза ниже, чем у бронзы, но больше, чем у меди.

Сравнение теплопроводности и электропроводности меди и различных марок латуни приведены ниже в табл. 5.

Табл. 5. Сравнение теплопроводности меди и латуней.

МАТЕРИАЛ … МЕДЬ Л68 Л63 ЛС59-1 ЛЖМц59-1-1
УДЕЛЬНОЕ ЭЛЕКТРОСОПРОТИВЛЕНИЕ 0.018 0.064 0.065 0.065 0.093
ТЕПЛОПРОВОДНОСТЬ 0.925 0.28 0.25 0.25 0.18

Механические свойства латуни.

Твердость, предел текучести, предел прочности и пластичность простых латуней выше, чем у меди. В целом эти показатели растут с увеличением содержания цинка. Специальные же латуни обладают большей прочностью, по сравнению с простыми латунями.

Естественно, что механические свойства любого материала зависят от того в каком состоянии он подвергается испытаниям. На рис. 6 приведены значения основных параметров механических свойств для прутков из нескольких марок латуней и, для сравнения, из меди (правая часть рисунка). Хорошо видно, что медь обладает значительно более низким уровнем механических свойств.

Рис. 6. Механические свойства различных марок латуни.

| следующая страница ==>
Латунь — ее свойства и области использования. | Технологические свойства латуней.

Дата добавления: 2014-05-02; просмотров: 1.

refac.ru

Характеристики основных свойств деформируемых латуней и температуры их обработки

Зависимость модуля упругости от содержания цинка в латуняхВлияние цинка на свойства латуни

Механические свойства латуней определяются свойствами фаз, химическим составом и структурой. Почность латуней возрастает при увеличении концентрации цинка. Почность достигает максимального значения двухфазной области α+β при 45...47 % цинка. Когда β'-фаза полностью заменяет α-фазу, прочность латуни быстро уменьшается благодаря высокой хрупкости β'-фазы. Увеличение количества цинка уменьшает модуль нормальной упругости E. Когда содержание цинка превышает предела растворимости в α-фазе, в структуре сплава выделяется β'-фаза, что резко понижает модуля упругости. β-латуни с β'-структурой малопластичны при комнатной температуре. Сплавы меди с содержанием цинка более 50 % не подвергаются холодной деформации, поэтому в производстве применяются α и α+β-латуни, а β-латуни используют для особых приложений, например, как основа сплавов с эффектом запоминания формы.

Теплопроводность λ и ω электропроводность меди уменьшается при легировании цинком, и при концентрации его в латунях более 20 % теплопроводность λ и ω электропроводность меди имеет величину не боле 40 % от соответствующих характеристик меди.

Однофазные латуни после отжига в мягком состоянии имеют σв = 24—38 кгс/мм2 и δ = 45—60%, а двухфазные - σв = 35—45кгс/мм2 и δ = 33—65% Прочность и твердость латуней существенно повышается холодной пластической деформацией до σв = 42—75кгс/мм2, при этом пластичность резко снижается δ = 3—10%.

Однофазные α-латуни легко деформируются в горячем и холодном состоянии, но при нагреве выше 300°С и до 700°С снижают пластические свойства.Горячую деформацию латуней с α-фазой проводят при 7507—900°С. Рекомендованые температуры горячей обработки латуни приведены в твблице.

Лекгоплавкие примеси существенно влияют на горячую деформацию однофазных α-латуней, особенно висмут и свинец. Висмут в сплаве выделяется по границам α-зерен. Межзеренная прослойка висмута толщиной в несколько атомных слоев приводит к горячеломкости α-латуней.

В холодном состоянии все однофазные α-латуни имеют хорошую обрабатываемость давлением. В области концентраций, которые соответствуют α-фазе в медно цинковых растворах , повышение процента цинка увеличивает пластичность.Для деталей, которые изготовливают глубокой вытяжкой, подходит наиболее пластичная латунь Л68.

Двухфазные α+β-латуни обрабатываются в горячем состоянии лучше, чем однофазные α-латуни. α+β-сплавы обрабатывают в температурном интервале, где выделяется высокопластичная β-фазы. Примесям меньше влияют на деформацию α+β-латуни, чем на α-латуни. Скорость охлаждения α+β-латуни существенно влияет на структуру сплава. Перед прессованием латунный пруток, лист или труба нагревают до рекомендовонной температуры. В процессе прессования передний конец полуфабриката охлаждается наиболее интенсивно и образует мелкую игольчатую структуру с высокими механическими свойствами. Задний конца прутка остывает медленней и охлажденный метал образует зернистую структуру с пониженными механическими свойствами. Механические свойства сплава зависят от распределения α- и β'-фаз в матрице медно-цинкового сплава. Неоднородность структуры горячедеформированных полуфабрикатов двухфазных α+β-латуней устраняется отжигом с полной фазовой перекристаллизацией.

Двойная латунь Л63 содержит неравновесную β-фазу, что необходимо учитывать при выборе режимов термообработки.

При поизводстве латунного проката полуфабрикаты деформируются в несколько этапов. Лтунь накапливает сумарную деформацию, теряет плстичность и требует промежуточных рекристаллизационных отжигов, для снятия напряжений деформации. Величина допустимой суммарной холодной деформации уменьшается с повышением содержания цинка, зависит от способа обработки давлением и определяется опытным путем для каждой марки латуней.

Из практики, отжиг латуни — самая распостраненная операция по термообработке. Медно-цинковые сплавы кристализуются в узком температурном интервале, что препятствует возникновению неоднородностей состава. При застывании латуни не образуют хрупкие интерметаллидные фазы. Поэтому гомогонизационный отжиг к латуням не применяется. Нагрев слитка и последующая горячая деформация полностью устраняют последствия неравновесной кристаллизации.

Латуни подвергают рекристаллизационному отжигу для снятия внутренних напряжений между этапами при обработке давлением или чтобы получить высокую пластичность латуни при средней прочности на финальной стадии изготовления латунных заготовок.

Размер зерен рекристаллизованных определяет механические, пластические и технологические свойства латуни. При отжиге желательно добиться структуры с мелким и однородным размером зерен.

Концентрация цинка и фазового состав влияют на динамику рекристаллизации латуней. В α-латунях зерно начинает расти при относительно низких температурах (выше 350...400°С) и размер зерна увеличивается до температуры солидуса. Зерно вырастает до размера 350мкм и более. Температура начала рекристаллизации α-латуней понижается при повышении содержания цинка.

В двухфазных α+β - и специальных латунях интенсивный рост зерен происходит только, если температура нагрева соответсвует однофазной области β-фазы. После сильной деформации двухфазной латуни рекристаллизации α-фазы начинается при более низкой температуре в 300°С, чем β-фазы. Рост рекристаллизованных зерен α-фазы ограничивают нерекристаллизованные зерна β-фазы. В α+β-латунях зерно начинает расти при температурах окончания α → β перехода и в однофазной β-области.

Латунь отжигают при температуре на 250 — 350°С выше температуры начала рекристаллизации. Для большинства латуней она лежит в диапазоне 450—700°С. Если сплавы меди с 32—39% Zn отжигать при температурах выше α/α+β перехода, то выделившаяся β-фаза вызывает неоднородный рост зерна. Для получения однородной структуры такие сплавы отжигают при температурах, не превышающих линию сольвуса α-фазы в системе Cu-Zn. Поэтому для отжига латуни с концентрацией цинка, близкой к максимальной растворимости цинка в меди, необходима точная регулировка печи по температуре и однородное распределение температуры по объему печи.

Отжиг двухфазных α+β-латуней создает параллельный процесс — α↔β фазовую перекристаллизация. Поэтому скорость охлаждения влияет на пропорцию α- и β-фаз в матрице сплава при нормальной температуре. Количество β'-фазы увеличивается при увеличении скорости охлаждения, что повышает твердость латуней и улучшает обработку резанием. Высокую пластичность обеспечивает медленное охлаждение, чтобы количество α-фазы было максимально возможным.

Цинка в меди при низких температурах (ниже 450°С) обладает переменной растворимостью. Это качество необходимо учитывать при выборе режимов рекристаллизационного отжига сплавов системы Cu-Zn, лежащих вблизи границы растворимости. Ускоренное охлаждение таких латуней делает их склонными к упрочнению при старении. Прочности при старении повышается с увеличением содержания цинка от 35% до 42%, но снижается пластичность сплава. В промышленности этот вид термоупрочнения не используют, но скорость охлаждения при отжиге латуней должна контролироваться, чтобы избежать получение пересыщенного твердого раствора.

Высокие степени деформации при изготовлении листов и лент создают текстура проката. Текстура проката при отжиге становится в текстурой отжига. Штамповка изделий из таких полуфабрикатов с анизотропными свойствами может вызвать брак по фестонистости. Склонность к такому виду брака и высота фестонов зависит от всей предыстории получения полуфабриката: степени деформации при проходах, температур промежуточных и окончательных отжигов и т.д. Установлено, что высота фестонов растет с увеличением степени деформации при двух последних проходах, с понижением температуры предпоследнего отжига и с повышением температуры последнего отжига; при малых степенях деформации при изготовлении листа анизотропия вытяжки выражена тем ярче, чем ниже температура промежуточных отжигов.

Размер зерен в полностью рекристаллизованной структуре латуней довольно однороден. Если режим рекристаллизационного отжига нарушается, то латунь образует «двойную» структуру , которая состоит из зерен крупного и мелкого размеров. Такая структура проявляется как шероховатость поверхности или т. н. «апельсиновая корка» при диаметре зерен более 40мкм после штамповки. «Двойная» структура ухудшает качество полировки и травления изделий из латуни. Режим обработки устраняет этот дефект после штамповки или полировки. Полуфабрикатів с частично рекристаллизованной структурой и с малым диаметром зерна не образуют «апельсиновую корку».

Неполный отжиг проводят в интервале температур 250—350°С. Он применяется для уменьшения остаточных напряжений, которые могут приводить к так называемому «сезонному» растрескиванию латунных изделий. Такая коррозия характерна для латуней с концентрацией цинка более 15 %. Межкристаллитные трещины растут под одновременным воздействием механического и коррозионного факторов: остаточных и внешних напряжения и химических веществ, например, растворы и пары аммиака, влажный серный ангидрит, различные амины.

Остаточных напряжений уменьшают отжигом при температуре ниже начала рекристаллизации 250— 330°С. При таком отжиге латунь не ухудшает механические свойства, которые приобрела нагартовкой, остаточные напряжения снижаются не только суммарно, но уменьшается степень локальных, точечных напряжений.

Обрабатываемость латуней резанием зависит от их фазового состава. При обработке резанием однофазных α-латуней стружка получается длинной, наматывается на резец, и качество обрабатываемой поверхности ухудшается. Двухфазные α+β-латуни имеют лучшую обрабатываемость резанием, чем однофазные. Повышение содержания β'-фазы в структуре делает латуную стружку более хрупкой и мелкой, и качество поверхности обрабатываемой детали повышается. Количественная оценка обрабатываемости резанием латуней определяется сравнением с латунью ЛС63-3, обрабатываемость резанием которой принята за 100%. Так, например, обрабатываемость резанием однофазной α-латуни Л90 составляет 20%, двухфазной Л63 — 40% по сравнения латунью ЛС63-3.

Однофазные α-латуни отлично полируются, двухфазные несколько уступают им в этом.

Пайка и сварка

Латуни очень хорошо паяются мягкими припоями. Перед пайкой производят зачистку паяемой поверхности либо шлифованием, либо травлением в кислоте. В качестве припоя предпочтительно применять сплавы, содержащие около 60%олова. Сурьмы сильно реагирует с цинком, поэтому ее концентрацию ограничивают 0,25—0,5%. Хлоридные флюсы рекомендуются для пайки в первую очередь.

Для однофазных α-латуней хороший результат дают твердые припои: серебряные, медно-фосфористыми. Паяемость α+β-латуней твердыми припоями несколько хуже, чем мягкими. Пайку латуней медно-фосфористыми припоями проводят без флюсов, так как при этом происходит самофлюсование. При пайке латуней другими твердыми припоями необходимо применять соответствующие флюсы.

По свариваемости латуни несколько уступают меди. Для получения неразъемных соединений применяют следующие виды сварки: дуговая с угольным электродом, дуговая с расходуемым электродом, дуговая с вольфрамовым (нерасходуемым) электродом в среде защитного газа (аргона, гелия), кислородо-ацитиленовая сварка, электрическая контактная сварка (точечная, роликовая, стыковая) и др.

Высокое содержание цинка в латунях затрудняет дуговую сварку из-за его испарения, поэтому присадочные материалы должны содержать относительно небольшие количества цинка. Сварка угольным электродом латуней, содержащих 15—30% Zn, лучше всею ведется с помощью присадочного материала из сплава Cu + 3%Si . Дуговая сварка латуней вольфрамовым электродом в среде инертного газа осложняется выделением паров оксида цинка, которые подавляют действие дуги. Поэтому сварку следует вести при больших скоростях.

Хорошие результаты дает кислородноацитиленовая сварка. Латуни с высоким содержанием цинка удовлетворительно свариваются контактной сваркой.

Коррозионные свойства

Латуни обладают хорошей коррозионной стойкостью в атмосфере городской и сельской местности, а также в условиях морского климата. Латуни, содержащие менее 15 % Zn, по коррозионной стойкости близки к меди промышленной чистоты. Скорость коррозии латуней в атмосферных условиях не превышает 0,001мм/год.

Скорость коррозии латуней в пресной воде незначительна, и при температуре 20°С она составляет 0,0025—0,025 мм/год. По отношению к почве латуни обладают хорошей коррозионной стойкостью, к пищевым продуктам — нейтральны.

Под воздействием минеральных кислот (азотная, соляная) латуни интенсивно корродируют. Серная кислота действует на латуни значительно медленнее, однако в присутствии окислителей K2Cr2O7, Fe2(S04)3 скорость коррозии увеличивается на два порядка. Латуни весьма устойчивы в растворах щелочей (за исключением аммиака) и в концентрированных растворах нейтральных солей.

Сероводород оказывает сильное корродирующее действие на латуни, однако латуни с повышенным содержанием цинка (более 30 %) более устойчивы в среде сероводорода, чем медь и латунь с низким содержанием цинка.

Обесцинкование латуни

Латуни, кроме общей коррозии, подвержены также особым видам коррозии: обесцинкованию и «сезонному» растрескиванию. Обесцинкование — это особая форма коррозии, при которой сначала происходит растворение поверхности латунного изделия в реагенте. Раствор, в котором происходит обесцинкование латуни, содержит больше цинка, чем меди. В результате обменных реакций в катодных участках электрохимически осаждается медь в виде губчатой пленки. Быстрее обесцинкованию подвергаются латуни с повышенном содержанием цинка (Л60, Л63), так как в двухфазных латунях наблюдается преимущественное растворение β-фазы, являющейся анодом, а α-фаза — катодом. Процесс обесцинкования наблюдается при контакте латуни с электропроводящими средами (кислые и щелочные растворы). В результате латуни становится пористыми, на поверхности появляются красноватые пятна, ухудшаются механические свойства

www.metmk.com.ua


Смотрите также