Каталог
  

Какое строение имеет алмаз


Строение алмаза и важные характеристики камня

Здравствуйте, дорогие друзья. Многим людям нравится прекрасная игра свет в гранях настоящих алмазов. Со временем простой интерес требует все большего погружения в тему драгоценных камней, а именно алмазов. Хочется побольше узнать об их структуре, позволяющей камням быть такими прочными. Вдвойне усиливает интерес тот факт, что настоящий камень в домашних условиях достаточно трудно повредить, да и тускнеть камушек с годами не собирается. Строение алмаза действительно удивительно.

Графит и алмаз имеют одну и ту же природу, одно происхождение. Ведь в основе их лежит всем известный углерод. До сих пор остается только поражаться тому, как из одного и того же элемента могут получаться толь разительно отличающиеся друг от друга вещества. Какое же строение имеет неограненный бриллиант?

  • 1 Строение алмаза
  • 2 Физические свойства алмаза

Строение алмаза

Структура кристалла камня имеет очень гармоничное строение и связь атомов. Это и неудивительно: углеродные атомы стремятся к расположению в центре, а верхними точками (вершинами) в такой форме бывают только самые близкие друг относительно друга атомы углерода. Кстати, плотность адаманта как раз объясняется тем, что атомы элементарной ячейки связывает ковалентная связь.

Строение кристаллической решетки вы можете увидеть в этом небольшом ролике:

Самое интересное, что грани алмаза появляются только при его огранке. То есть с формой кристалла это не связано никак.

Вообще, минерал, как уже отмечалось, является почти стопроцентным углеродом. Однако при этом в нем можно обнаружить достаточно много примесей (правда, в пределах всего одного процента). Кремний, магний, азот – чего только не встретишь в той незначительной доле дополнительных веществ, что имеются у алмаза. И это далеко не полный список.

Формой кристалла алмаза при этом является тетраэдр, то есть по сути правильная пирамида с четырьмя треугольниками в качестве плоскостей. Любая из решеток минерала имеет кубическую форму, отсюда и название кристаллической решетки.

Благодаря в том числе своему строению, бриллиант часто используется в технике и во многих отраслях промышленности, о чем вы можете почитать тут.

Физические свойства алмаза

Помимо общих сведений о строении камня, с помощью такой информации можно получить и некоторые другие сведения, касающиеся его свойств.

Как уже упоминалось ранее, алмаз является самым твердым среди существующих на Земле веществ (плотность по шкале Мооса ориентируется в своем максимальном значении 10 именно на него). А вот некоторые разновидности минерала хоть и имеют схожую структуру, но при этом обладают куда более низкими твердостями. К примеру тот же корунд куда менее твердый – алмаз превышает его по этому качеству примерно в 150 раз.

Тот же графит является намного более мягким по одной простой причине – кардинальном различии строения кристаллической решетки.

  1. Благодаря таким своим качествам, алмаз отлично подходит для обработки и огранки некоторых других драгоценных камней, таких как берилл или сапфир и некоторых дургих. Ведь алмаз невероятно устойчив к истиранию.
  2. Однако несмотря на все перечисленное, этот камень все равно нужно беречь от случайных падений. Ведь камень очень хрупок, если он упадет со стола или другой высокой поверхности, то вероятность трещин и сколов при этом очень высока. Все дело в многослойной спайной структуре.
  3. Благодаря некоторым атомарным особенностям строения, алмаз является превосходным диэлектриком (о чем вы наверняка слышали на уроках физики). При этом и теплопроводность среди всех известных твердых тел у алмаза самая высокая – достигает 24 Вт/см.
  4. Из сведений о структуре и твердости минерала можно узнать и массу одного его карата (единицы измерения). Для этого вещества она составляет порядка 0,2 грамм. Чтобы измерить это значение и не забыть его, у мастеров ювелирного дела есть специализированные таблицы.
  5. Одними из самых ценных качеств адаманта являются его превосходные свойства дисперсии и преломления. Благодаря им можно наслаждаться игрой света в гранях обработанного минерала. Опытные мастера даже по такому блеску уже могут определить, настоящий ли перед ними камень или нет.
  6. Из-за строения адамант горит в кислородной среде аж при 800 градусах по Цельсию. При этом горит камень прекрасным голубоватым пламенем. Обратный процесс распада камушка начинается в вакууме при температурах от 2000 градусов – при этом минерал становится обратно графитом.

Эксперименты

Кстати насчет горения. Некоторые умельцы проворачивают эксперименты по горению в лабораториях. Конечно, это специалисты, повторять такое не стоит (да это и очень сложно). Процесс одного из таких экспериментов можно наблюдать на видео:

Еще больше фактов  камнях и их особенностях ждут вас дальше. Заходите в гости почаще и делитесь своими впечатлениями с помощью кнопок социальных сетей. До скорых встреч!

Команда ЛюбиКамни

lubikamni.ru

Характеристика строения алмаза

Любителям драгоценных камней весьма интересна тема про строение алмаза, описание его и основные физические, механические и химические свойства. Этот красивый камень по своей химической структуре относится к неметаллам и имеет кристаллическую структуру. Говоря языком химиков, адамант — это кубическая аллотропная форма углерода. В ювелирном искусстве эта форма углерода считается самым дорогим из драгоценных камней, и украшения с адамантом стоят очень дорого. Это связано с тем, что блеск кристаллов этого вещества невозможно сравнить ни с чем. И к тому же он не тускнеет и не царапается. То есть полированная поверхность кристаллов в украшениях всегда радует глаз.

Как ни парадоксально звучит, но адамант и графит имеют одинаковое строение. И эти два таких диаметрально противоположных вещества имеют одну природу. Дело в том, что и диамант, и графит образованы атомами углерода. Рассмотрим подробнее строение и свойства бриллианта.

Строение алмаза и его характеристика

По структуре кристалл алмаза имеет форму тетраэдра, и при этом атомы углерода располагаются в центре. Вершинами в таком тетраэдре служат самые близкорасположенные атомы углерода. Получается очень стабильная атомарная связь в самой структуре кристалла, и этим объясняется повышенная прочность вещества. Между собой атомы, из которых состоит элементарная ячейка, связаны ковалентной связью. Этой особенностью объясняется высокая плотность алмаза.

В целом кристалл алмаза можно представить как молекулу гигантских размеров. Напомним, что молярная масса этого кристалла равна 12. Форма кристалла не связана с количеством граней у ювелирного камня. Грани алмаза появляются при его обработке.

По химической структуре алмаз является чистым углеродом. Но в его состав все же входят и примеси. Проведенный химический анализ позволил определить наличие некоторого количества других веществ. К примесям относятся такие вещества, как:

  • азот;
  • магний;
  • алюминий;
  • кремний.

И еще много других химических элементов таблицы Менделеева. Причем многие из элементов представляют собой изоморфные включения. Но люди используют алмазы не только для изготовления ювелирных украшений. Широкое применение получил этот кристалл в технике. И все это благодаря своим уникальным свойствам и высочайшей прочности.

Представленное видео хорошо показывает кристаллическую структуру бриллианта.

Физические свойства алмаза

Алмаз — это самое твердое вещество, которое встречается в природе.

Одна из разновидностей адаманта — корунд — имеет сходное строение, но боле низкую твердость (твердость корунда ниже, чем у адаманта в 150 раз).Стоит упомянуть, что твердость веществ определяется по шкале Мооса. По этому ранжиру алмазу присваивается самый высокий показатель твердости — 10.

Стало быть, его можно использовать для обработки металлов, в том числе и высокопрочных, и твердых минералов, таких как берилл, гранат, сапфир и другие. Алмазный инструмент очень устойчив к истиранию. Твердость и плотность алмаза выше, чем у кварца и корунда.

Но при всей твердости у диаманта высокая хрупкость. И даже выраженная в высокой степени плотность не снижает вероятность раскола при падении. Ведь чистый кристаллический углерод, каким и является диамант, имеет многослойную структуру. И при резких ударах о твердую поверхность возможен его раскол в тех местах структуры, где связь между атомами весьма слабая. Именно в местах спайности атомов и происходит раскол.

И при всей износоустойчивости и долговечности этого вещества его нужно уберегать от падений на твердую поверхность. У этой разновидности углерода и самая высокая теплопроводность среди всех твердых тел. Теплопроводность алмаза составляет от 20 до 24 Вт/см. Также нужно сказать, что диамант является диэлектриком. Это объясняется особенностями атомарных связей в кристалле этого вещества.

Температура горения диаманта в кислороде составляет 800°С. Эта разновидность углерода горит красивым голубым пламенем. А вот при температуре 2000°С и при отсутствии кислорода этот красивый минерал превращается в графит. Показатели температуры плавления у алмаза равняются 3700-4000°С.

Самое основное и ценное свойство бриллианта — это его показатель преломления и высокая степень дисперсии. Блеск диамантов зависит от этих характеристик и является отличительным признаком этого драгоценного минерала. Вес бриллиантов измеряется в каратах. При этом вес одного карата алмаза равен примерно 0,2 грамма. Для определения этой величины у ювелиров существуют необходимые таблицы и сведения.

Оцените статью:

1 голосов, в среднем: 5,00 из 5 Загрузка...

vseokamnyah.ru

ПОИСК

Рис. XIV, 1. Строение графита и алмаза
    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном его агрегатном состоянии. Из таблицы, приведенной ниже, видно, что энтропия веществ зависит от молекулярного веса (и увеличивается с его ростом в ряду близких по свойствам веществ), от агрегатного состояния веществ (н возрастает при переходе от твердых тел к жидким и особенно к газообразным), а также от кристаллического строения (ср. энтропии графита и алмаза), изотопного состава (Н О h DjO) н структуры молекул (н-бутан и изобутан). [c.101]

    Важной характеристикой макромолекулы является величина отношения площади ее поверхности к размеру (массе). Молекулы, разумеется, не имеют поверхности. Таким образом, макромолекулами данного твердого вещества являются твердые тела одного и того же состава, строения и молекулярной массы не менее некоторой критической величины. Монокристаллы алмаза, граната, цеолитов представляют собой макромолекулы. Кусок каменного или древесного угля, стекла или других некристаллических твердых тел — тоже макромолекула соответствующего твердого вещества. [c.16]

    Учение о химической связи должно ответить на вопросы почему атомы объединяются в молекулы, кристаллы Почему химические соединения имеют тот или иной состав, то или иное строение Почему, например, атомы водорода объединяются в двухатомные молекулы, атомы углерода образуют кристалл алмаза, а атомы натрия и хлора — ионный кристалл хлорида натрия  [c.41]

    Сочетая одновременное действие высокого давления и высокой температуры, оказалось возможным впервые искусственно получить некоторые минералы, встречающиеся в природе, а также получить новые кристаллические формы многих соединений, неизвестные в природных соединениях. Так, были получены три новые кристаллические формы ЗЮа. Нитрид бора ВК, получаемый при обычных давлениях в форме, близкой по строению графиту, в условиях высокого давления и высокой температуры (около 1500° С и 65 000 атм) образуется в форме, сходной с алмазом по кристаллической структуре и сравнимой с ним по твердости (ее называют иногда боразоном). В настоящее время при высоком давлении и высокой температуре осуществляется искусственное получение алмазов. [c.241]

    Простые атомные твердые вещества — алмаз, кремний и другие неметаллы и металлы, а также ионные соединения мы рассматриваем в этой главе наряду с органическими и неорганическими полимерами, так как все эти вещества построены посредством межатомных связей. Для полимеров характерно пребывание в аморфном состоянии, когда вещество имеет непериодическое, но во многих важных случаях регулярное, т. е. закономерное строение. О строении аморфных веществ, как, впрочем, всех веществ вообще, можно судить по их остову, т. е. непрерывной цепи, сети или каркасу атомов, связанных межатомными связями. [c.38]

    Энтропия элементарного твердого вещества зависит от строения его аллотропной формы. Структура алмаза, например, более упорядочена, чем структура графита, и энтропии их составляют 5 , = 2,38 э. е. 5,р = 5,73 э. е. [c.79]

    Полезно подчеркнуть, что свойства веществ в кристаллическом состоянии зависят не только от состава и условий существования, как в случае газов и жидкостей, но и от внутреннего строения. Так, хорошо известно, что хотя алмаз и графит совершенно одинаковы по составу, однако по своим свойствам они резко различны. Алмаз, например, обладает наибольшей твердостью по сравнению со всеми другими природными материалами (вспомним алмазное бурение) графит же, наоборот, очень мягок и применяется для смазки трущихся металлических поверхностей, изготовления карандашей и т. д. [c.121]

    Строение синтетических поликристаллических алмазов БАЛЛАС и КАРБОНАДО  [c.156]

    Структура (С2Г)п имеет принципиально отличающуюся от (СГ)п модель строения [6-169]. Углеродные слои в этом соединении остаются плоскими. Атомы фтора внедряются в каждый второй слой углеродной матрицы [6-170]. На рис. 6-60,а показано взаимное расположение атомов фтора и углерода в (С2Г)п. Атомы фтора ковалентно связаны с атомами углерода в направлении, перпендикулярном углеродным плоскостям. Две трети атомов фтора имеют в ближайшем окружении 2 атома углерода и одна треть — 3 атома углерода, как и у (СГ) . Длина С—Г связи равна 0,138 нм а С—С связи — среднеарифметическому значению длин связей в графите и алмазе (0,147 нм). Атомы фтора образуют в упаковке (СгГ)п гребни. Последние входят во впадины последующего слоя (рис. 6-60, б). В результате обеспечивается плотный контакт между слоями. Такое упорядоченное состояние упаковки соответствует отдельным фрагментам кристалла, имеющим свой центр кристаллизации, которые в совокупности образуют мозаику. [c.391]

    Полимеры трехмерного строения. Высокомолекулярные вещества, обладающие трехмерным остовом, если это простые вещества, вроде алмаза, германия, кремния, или несложные соединения, вроде кварца 8162, представляют собой правильные кристаллы. Но уже такие соединения, как кремнезем, при сравнительно быстром отвердевании образуют аморфное вещество (стекло). Аморфное, стеклообразное состояние характерно для веществ, в строении которых имеется трехмерный остов, связанный прочными направленными межатомными связями. [c.42]

    Остов полимеров. В наиболее ясно выраженном виде остовы разных видов существуют в строении атомных соединений, что не удивительно, так как преобладающие в строении этих соединений ковалентные связи отличаются не только направленностью, но и прочностью. Так, в органических соединениях часто встречаются цепные, слоистые и каркасные остовы, построенные из атомов углерода, соединенных а-связями. Цепочечный остов можно обнаружить в твердом парафине, в полиэтилене (рис. 20) трехмерный— в активированном угле, в алмазе. Остовы всех этих трех видов часто имеют ароматические соединения. Подобным двухмерным, слоистым остовом обладает графит. [c.78]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]

    Как согласуется характер изменения твердости и стандартной энтропии в ряду С (алмаз)—81 — Ое р-8п — РЬ с их строением  [c.85]

    На рис. 11 приведены схемы строения атомных решеток алмаза и графита. В силу своеобразия структуры графит имеет очень малую прочность связи по плоскостям спайности кристалла, тогда как алмаз обладает огромной твердостью, поскольку все атомы углерода в его кристаллической решетке расположены друг от друга на одинаковом расстоянии. [c.32]

    Особенности строения кристаллических решеток графита н алмаза приводят к заметному различию их физических и химических свойств. Алмаз — изотропное вещество, т. е. все его физические свойства не зависят от направления, в котором они рассматриваются. Графит, напротив, — анизотропное вещество, легко колется на пластины в направлениях, параллельных атомным пло- [c.95]

    Примером трехмерного неорганического высокомолекулярного соединения может служить алмаз, состоящий из атомов углерода. В кристалле алмаза каждый атом углерода связан с четырьмя другими ближайшими атомами углерода. Кристалл алмаза можно считать одной гигантской молекулой, лишенной ряда свойств, типичных для обычных молекул. Вследствие такого строения алмаз не способен набухать, не растворяется ни в одном из растворителей и обладает очень большой твердостью. Структура графита и алмаза показана на рис. XIV, 1. [c.421]

    ПРОСТОЕ ВЕЩЕСТВО — простое тело, однородное вещество, состоящее из атомов одного и того же химического элемента форма существования химического элемента в свободном состоянии алмаз, графит, уголь (состоят из атомов углерода, но отличаются по своему строению н свойствам), кислород и озон (отличаются по числу атомов в молекуле и по свойствам) и т. д. [c.205]

    Она зависит от молекулярной массы — для родственных веществ увеличивается с ее ростом от агрегатного состояния — увеличивается при переходе от твердого к жидкому и от жидкого к газу от кристаллического строения (графит, алмаз) от изотопного состава (Нз и Ог, НгО и ОгО), от структуры молекул (н-бутан и изобутан). [c.77]

    Величина энтропии сложным образом отражает всю совокупность свойств соединения в данном агрегатном состоянии. Она зависит от молекулярной массы — для родственных веществ увеличивается с ее ростом от агрегатного состояния — увеличивается при переходе от твердого к жидкому и от жидкого к газу от кристаллического строения (графит, алмаз) от изотопного состава (Нг и Ог, НгО и ОгО), от структуры молекул ( -бутан и изо-бутан). [c.66]

    В атомных решетках атомы связаны за счет ковалентной или металлической связи. Примерами веществ с атомно-ковалентной решеткой являются алмаз, диоксид кремния SiOj. Строение ковалентных кристаллов можно 0б7 .ЯСИИТЬ представлением о направленности [c.101]

    К.ак видно на рис. 126, температура плавления простых веществ в периодах вначале возрастает, затем падает. Наименьшую температуру плавления имеют простые вещества с молекулярной структурой, Б особенности одноатомные простые вещества s- и р-элементов VHI группы (благородные газы). В обычных условиях простые вещества молекулярного строения являются газами, жидкостями или относи-тель(ю легкоплавкими твердыми телами. Наиболее тугоплавки алмаз и кремний, имеющие ковалентные атомно-коордннационные решетки. [c.235]

    По внутреннему строению карборунд представляет собой как бы алмаз, в отором половина атомов углерода равномерно заменена гтомамн кремния, (аждый атом углерода находится в центре тетраэдра, в вершинах которого рас-юложены атомы кремния в свою очередь каждый атом кремния окружен по-(обным же образом четырьмя атомами углерода. Ковалентные связн, соединяю-цле все атомы в этой структуре, кан и в алмазе, очень прочны. Этим объяс-1яется большая твердость карборунда. [c.509]

    Изучение ультратон к их срезов. Метод реплик, передавая строение только видимой, геометрической поверхности частицы, не дает представления о ее внутренней структуре, которая может заметно отличаться от строения видимой поверхности вследствие прошедших реакций гидратации и гидролиза. Метод получения ультратонких срезов с поверхности твердого тела (толщиной около 0,1 мкм) позволяет восполнить этот пробел и изучить и внутреннюю, и внешнюю истинную физическую структуру частиц. Для приготовления срезов применяют специальные приборы — микротомы и ультрамикротомы, в которых режущим инструментом является равномерно и точно движущийся нож из алмаза или зеркального стекла. [c.142]

    Частицами, образующими кристалл, закономерно располагающимися в пространстве, могут быть ионы (разноименно заряженные, как в Na l, и одноименные, как в металлах) или нейтральные атомы (одного и того же элемента, как в алмазе, и различных элементов, как в Si ), или целые молекулы, как в кристаллах льда или бензола. В соответствии с этим связи между частицами кристалла по характеру более разнообразны, чем связи, с которыми мы познакомились, рассматривая строение молекул. Кроме тех же ионной и ковалентной связей, в кристаллах имеются металлическая и межмолекулярная связи. Наряду с этими основными видами связей в кристаллах нередко проявляются водородные и иоиодипольные связи. [c.124]

    Адамантан, обладающий весьма своеобразным полиэдрическим строением, впервые был выделен из годонинской нефти (Чехосло-накия) его исследовали в 1933 г. Это кристаллическое веществе , которое плавится при 269 °С (сама высокая температура плавления среди всех известных углеводс родов). Молекула адамантана состоит из трех конденсированных циклогексановых колеи, имеющих форму кресла. Пространственное положение атомов углерода в молекуле адамантана такое же,как и в кристаллической решетке алмаза. [c.130]

    В последнее время исследователи все больше начинают рассматривать различные модификации углерода как полимеры так, они представляют алмаз как пространствеиный иолиме[), в отличие от слоистого полимера графита, существующего как бы в двух измерениях. Карбин — третья модификация углерода, открытая советскими учеными [55], представляет собой полимер линейного строения с чередующимися одинарными и тройными связями (—С = С—С = С—) , где п может достигать 100 и более. Прочность связей в карбпие в результате эффекта сопряжения превышает прочность связей, существующих в кристаллах алмаза и графита, что весьма осложняет его получение. [c.51]

    Родоначальник подгруппы — углерод (лат. сагЬопеит) существует в свободном виде в двух аллотропных модификациях — графит и алмаз,— резко различающихся по строению и свойствам (см. ниже). Углерод — один из важнейших элементов в природе. Его соединения составл.чгот основу живей природы — флоры и фауны. [c.130]

    Объясните строение алмаза исходя и.ч нрсдставления об участии в химической связи, р -гибридных орбиталей атомов углерода. Почему алмаз отличается высокой твердостью  [c.99]

    При таком строении в углеводороде нет никакого напряжения связей и модель его имеет шарообразную форму. Формула углеводорода такая же, как у терпенов С оНхв- Название свое он получил от слова адамант — алмаз, так как имеет решетку алмаза. [c.97]

    Ножкина A.B., Лаптев А.И., Салимон А.И. Строение синтетических поликристаллических алмазов БАЛЛАС и КАРБОНАДО ..........156 [c.13]

    В атомных решетках атомы связаны за счет ковалентной или металлической связи. Так, атомно-ковалентная решетка у алмаза (рис. 85). Строение ковалентных кристаллов определяется типом гибридизации орбиталей со-ставляюш,их их атомов. В кристалле алмаза, например, каждый из атомов углерода посредством электронов 5р -гибридных орбиталей связан с. четырьмя соседними атомами углерода. Координационные числа [c.135]

    По рисунку, изображающему кристаллическое строение алмаза, подсчитайте, сколько электро1юв входит во внешний электронный слой каждого атома углерода в алмазе. [c.102]

chem21.info

Физические свойства алмаза и их главные особенности

Доброго времени суток, друзья. Мир камней настолько разнообразен и ярок, что невозможно оторвать глаз. Но один камень заслуживает особенного внимания. Как вы догадываетесь, речь сейчас идет об алмазе. Сегодня вас ждут физические свойства алмаза и основные сведения о них.

Физические свойства алмаза и графита

К физическим свойствам любого вещества относят прежде всего температуру кипения, вязкость, плотность, цвет, абсорбцию, теплопроводность, электропроводность, твердость и т.п. В этой статье рассмотрим самые основные свойства камня.

Например, у минерала очень высокая теплопроводность. В этом он превосходит многие металлы и даже серебро с медью. Это свойство делает камень незаменимым во многих отраслях промышленности, науки и медицины.

При этом это вещество достаточно износостойко как с точки зрения воздействия других веществ, так и с точки зрения времени.

Однако при этом он очень хрупкий и чувствительный к перепадам температуры и воздействию моющих веществ.

Действительно, если уронить материал, то у него появятся заметные повреждения. А при усиленном воздействии косметических и моющих веществ внешний вид камня также может не улучшиться. По этим причинам с имеющимся экземпляром надо обращаться очень бережно и тщательно соблюдать основные правила ухода.

Строение и структура минерала

Чтобы лучше понимать устройство камня и особенности его свойств, необходимо хорошо представлять себе строение и структуру минерала. Если вкратце, то атомы его связаны между собой ковалентными связями и располагаются друг относительно друга тетраэдрическим образом. Алмаз имеет кубическую кристаллическую решетку, то есть все атомы располагаются самым плотным образом, из-за чего алмаз такой твердый и прочный.

Твердость алмаза

Самое главное качество алмаза, которое всегда упоминается при его описании, – это исключительная твердость минерала. Она составляет 10 из 10 по шкале Мооса. Помимо этого коэффициент трения минерала также составляет совсем маленькую цифру. Этими качествами часто пользуются для определения реальности экземпляра, делают выводы о его неподдельности.

Благодаря таким качествам, алмаз можно пытаться царапать и повреждать любыми материалами – ему все будет нипочем.

При этом твердость камня по всей поверхности является неоднородной, чем пользуются при огранке. Ведь, как известно, алмаз можно обработать только другим алмазом. Для этого в правильном соотношении берутся разные грани.

Плотность

Плотность камня или его удельный вес составляет серьезные 3,47-3,55 г/см3. Это означает, что экземпляр при равных объемах, будет тяжелее воды в 3,5 раза. Ведь удельным весом является отношение веса вещества к весу воды того же объема.

Вес и масса алмаза

Массу алмаза, как и других драгоценных камней и жемчуга, определяют с помощью меры, называемой каратами. Один карат имеет массу в 200 мг.

В зависимости от размера, алмазы распределяют на три большие группы:

  • мелкие (до 0,29 карат)
  • средние (от 0,3 до 0,99)
  • крупные (более 1 карата)

Массу алмаза можно установить и в зависимости от размера. Например, при классической огранке и диаметре 4,1 мм алмаз составляет 0,25 карат, а при диаметре в 11 мм уже 5 карат.

Вес камня – это произведение объема минерала на удельный вес. При наличии одинаковой круглой правильной формы объем экземпляра пропорцинален кубу диаметра.

Дисперсия и преломление

Свойство дисперсии очень важно, здесь она составляет порядка 0,06, а показатель преломления достигает 2,421. Эти показатели очень высоки, за счет чего мы можем наслаждаться игрой света в гранях алмазов, вернее уже бриллиантов, в которых, благодаря огранке, это выглядит куда красивее. Тут очень важен подход мастера, который должен справиться со своей задачей «на все сто», чтобы не повредить минерал и создать идеальную симметрию граней.

А помните переливание и игру «огня» внутри камней? За это как раз отвечает дисперсия.

Форма камня

Минералы чрезвычайно разнообразны с точки зрения существующих форм. Можно встретить вытянутые, деформированные, сплющенные и многие другие формы. Вот только несколько видов наиболее распространенных форм минерала:

  • октаэдроид,
  • додекаэдроид,
  • псевдокуб,
  • гексаэдроид и др.

В природе у алмазов есть множество дефектов вроде трещин, сростков и т.п. Именно поэтому алмазы необходимо огранять, чтобы придать им тот прекрасный вид, какой мы привыкли видеть в бриллиантах.

Еще больше об этом удивительном камне и его свойствах вы можете услышать из небольшой лекции Виктора Бескрованова, доктора геолого-минералогических наук, преподающего в Северо-Восточном федеральном университете Якутии:

Алмаз – удивительное явление. Но существует немало и других прекрасных разновидностей драгоценных камней, о которых будет идти речь в дальнейшем. До скорых встреч, дорогие друзья!

Команда ЛюбиКамни

lubikamni.ru


Смотрите также