Каталог
  

Какую кристаллическую решетку имеет алмаз


Тип кристаллической решётки алмаза

Химический элемент углерод (C) — один из самых важных в природе. Он входит в основные строительные соединения человеческой ДНК, имеет множество соединений с другими элементами. Получаемые в результате вещества используются во многих сферах жизни. Под давлением элемент имеет свойство перестраивать свою внутреннюю структуру, превращаясь сначала в графит, а при усилении воздействия образуется кристаллическая решётка алмаза.

Строение кристалла и способ образования

В химико-физическом смысле — это аллотропная разновидность химического элемента углерода. Имеет так называемую эталонную твёрдость в шкале Мооса — она равняется десяти и делает его самым прочным материалом на Земле. В естественных условиях на поверхности практически вечен, если находится долгое время в разреженной газовой среде, то возможно его превращение в графит.

Алмаз имеет кристаллическую решётку в форме куба. Являясь самым компактным видом взаимного расположения атомов вещества, именно она является причиной всех его свойств, относящихся к прочности.

Другие характеристики алмаза:

  • Хоть и твёрдый, но очень хрупок. Для того чтобы легко разрушить кристалл, достаточно одного резкого удара.
  • Имеет сравнительно высокую температуру плавления — около тысячи градусов Цельсия. Под давлением в десять гигапаскалей может выдерживать и втрое большие термические нагрузки.
  • Природный цвет — бледно-жёлтый. Если в составе присутствуют добавления железа или других естественных металлов, может иметь оранжевые, красные или даже зелёные оттенки.

Кубический тип кристаллической решётки алмаза состоит из 18 атомов углерода. Они сгруппированы по четыре, формируя правильные пирамиды с четырьмя вершинами — тетраэдры. Связаны между собой все эти структуры самым прочным видом связи между различными химическими соединениями — ковалентным. Это происходит из-за того, что сам кристалл в основном состоит из одноатомного вещества.

Способы применения вещества

Всевозможные пути использования алмаза обусловлены его прочностью и способностью преломлять свет. Его способностью хорошо поддаваться огранке уже давно используется в изготовлении красивейших ювелирных изделий. Основные отрасли производства, в которых используются эти кристаллы:

  • Квантовые компьютеры. Используются при построении вычислительных единиц, кубитов, которые одновременно являются и оперативной памятью, и процессором таких устройств. Для использования в качестве кубита алмаз должен быть «дефектным» — содержать в своей толще атом другого вещества. Тогда хранить информацию на таком кристалле можно с использованием электронов чужеродного вещества. С помощью их спинов можно не только записывать, но и обрабатывать блоки данных. В качестве таких атомов используются, как правило, азот или кремний.
  • Ядерная энергетика — отработанные в качестве замедлителей и облучённые радиоактивными изотопами графитовые стержни устаревших реакторов можно использовать в качестве вторичного топлива для более новых. Для этого стержни нагреваются, часть радиоактивных изотопов углерода высвобождается в газообразной форме и улавливается специальными датчиками. После этого такой газ прессуется в искусственные алмазы. Имея в радиоактивном состоянии некоторое значение электропроводимости, такие кристаллы впитывают ими же выпущенные гамма-лучи, являясь довольно эффективной формой топлива.
  • Промышленность — кристаллы алмазов используются для изготовления режущих инструментов, причём как при заточке новых средств обработки, так и при модернизации старых путём напыления на их кромку тонкой плёнки из алмазной пыли.
Читайте также:  Кому подходит сапфир: магические свойства камня

Самым распространённым является, конечно, применение огранённых алмазов — бриллиантов — в ювелирном деле. В зависимости от того, какой тип кристаллической решётки у алмаза, а так же от его размера и естественной формы получаются разные вариации огранки этого вещества. Тип изделия тоже накладывает свои ограничения на форму камня — например, круглая огранка применяется в кулонах, перстнях или ожерельях, тогда как фантазийная может использоваться для украшения подвесок или сережек.

При огранке исходный кусок теряет больше половины своей массы. Масса бриллиантов измеряется в каратах, равных одной пятой грамма или 200 миллиграммам. Типичный камень, поддающийся огранке, например, в Индии, очень мелкий, массой до трети карата.

Другие лидеры в сфере производства бриллиантов — Израиль, Соединённые Штаты, Россия, Украина — занимаются огранкой камней среднего и крупного размера. Всё зависит от оплаты труда специалистов этой области в конкретной стране.

Получение искусственных алмазов

В природе алмазные кристаллы получаются в результате действия на протяжении очень большого времени геологических процессов. Для того чтобы появился естественный кристалл, должно пройти несколько тысяч или даже миллионов лет. Вещество, которое превращается в него, должно быть на протяжении всего чудовищно длительного периода под чрезвычайно высоким давлением. Поэтому советскими учёными в конце 30-х годов XX века были сначала сформулированы оптимальные физические условия для получения искусственных алмазов.

Читайте также:  Какие бывают драгоценные, полудрагоценные и поделочные камни

Только почти через 15 лет, после большого количества неудачных попыток, в Швеции были синтезированы первые камни. К концу девяностых годов прошлого века был разработан и опробован ещё один метод — взрывной. Для этого использовалась углеродсодержащая взрывчатка. На месте её подрыва всегда можно было обнаружить некоторое количество алмазной пыли.

Создавать искусственные алмазы можно и с помощью ультразвука. Это очень дорогой и трудозатратный метод, который пока не применяется в широких производственных целях.

Основной метод создания камней — подвергание графитовых стержней одновременному воздействию высоких температуры и давления. Примерные характеристики установок:

  • Максимальная температура нагрева — 1500 градусов Цельсия.
  • Предельно возможное давление — 5 гигапаскалей.

Под прессом и воздействием нагрева кристаллическая решётка графита постепенно преобразуется из гексагональной (десятиугольной) в кубическую постепенным передвиганием атомов углерода внутрь вещества.

Несмотря на то что процесс очень энергозатратный, а установки, позволяющие проводить его, очень сложны в конструкции, около 95% всех алмазов, используемых в промышленных целях на производстве — искусственные.

Читайте также:  Кому подходит натуральный камень топаз Лондон

kamen.guru

Типы кристаллических решёток — урок. Химия, 8–9 класс.

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц. Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки. В узлах воображаемой решётки могут находиться атомы, ионы или молекулы.

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную, металлическую, атомную и молекулярную.

Ионными называют решётки, в узлах которых находятся ионы.Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием. Ионные кристаллические решётки имеют соли, щёлочи, оксиды активных металлов. Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na+ и хлора Cl−, а в узлах решётки сульфата калия чередуются простые ионы калия  K+ и сложные сульфат-ионы SO42−.Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые, тугоплавкие, нелетучие. Такие вещества хорошо растворяются в воде. 

Кристаллическая решётка хлорида натрия

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Такие кристаллические решётки характерны для простых веществ металлов и сплавов.

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск, ковкость, пластичность, хорошо проводят электрический ток и тепло.

Металлическая кристаллическая решётка

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз — одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит, кремний, бор и германий, а также сложные вещества, например, карборунд SiC и кремнезём, кварц, горный хрусталь, песок, в состав которых входит оксид кремния(\(IV\)) SiO2.

Таким веществам характерны высокая прочность и твёрдость. Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения. Например, температура плавления кремнезёма — \(1728\) °С, а у графита она выше — \(4000\) °С. Атомные кристаллы практически нерастворимы.

Кристаллическая решётка алмаза

Алмаз

Молекулярными  называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость, низкие температуры плавления и кипения. Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы. Такие вещества летучи. Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах.

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами  (He,Ne,Ar,Kr,Xe,Rn), а также неметаллы с двух- и многоатомными молекулами (h3,O2,N2,Cl2,I2,O3,P4,S8).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода — лёд, твёрдые аммиак, кислоты, оксиды неметаллов. Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин, сахар, глюкоза).

Кристаллическая решётка углекислого газа

«Сухой лёд»

Кристаллики иода

Если известно строение вещества, то можно предсказать его свойства.

Попробуем определить, каковы примерно температуры плавления у фторида натрия, фтороводорода и фтора.

У фторида натрия — ионная кристаллическая решётка. Значит, его температура плавления будет высокой. Фтороводород и фтор имеют молекулярные кристаллические решётки. Поэтому их температуры плавления будут невысокими. Молекулы фтороводорода полярные, а фтора — неполярные. Значит, межмолекулярное взаимодействие у фтороводорода будет сильнее, и его температура плавления будет выше по сравнению со фтором.

Экспериментальные данные подтверждают эти предположения: температуры плавления NaF, HF и F2 составляют соответственно \(995\) °С, \(–83\) °С,  \(–220\) °С.

Источники:

Габриелян О. С. Химия. 8 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. — 133 с.  

www.yaklass.ru

Структура кристалла алмаза и его кристаллическая решетка

Опубликовано: juvelirum

Дата: 30 Май, 2013

Алмаз — это минерал, который является кристаллической модификацией чистого углерода (С). Алмаз обладает самой большой из всех известных в природе материалов твёрдостью, благодаря которой он применяется во многих важных отраслях промышленности.

Известны три кристаллические модификации углерода: кубическая (сам алмаз) и две гексагональные — графит и лонсдейлит. Последняя найдена в метеоритах и получена искусственно.

Кристаллическая решетка алмаза

Элементарная ячейка структуры алмаза имеет форму куба. Если говорить более научным языком, то алмаз кристаллизуется в кубической системе (так называемой «сингонии»).

В каждой вершине этого куба расположено по атому. По одному атому находится в центре каждой грани, четыре — внутри куба. Каждый из атомов, расположенных в центрах граней, является общим для двух ячеек, а каждый из атомов, находящихся в вершинах куба,— общим для восьми ячеек. Кубическая система — самая плотная упаковка атомов.

Попробуем выразить ту же мысль еще одним способом. Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Каждый из атомов связан со своими четырьмя ближайшими соседями, симметрично расположенными по его вершинам (тетраэдра), наиболее «прочной» химической связью — ковалентной.

Для справки: различают несколько типов химической связи: ионная, ковалентная, металлическая, водородная.

Идеальный кристалл алмаза можно представить себе как одну гигантскую молекулу.

В результате получается очень плотное расположение атомов, прочные связи между которыми в структуре алмаза обусловливают его исключительную твердость  и другие характерные свойства.

ВСЕ КАМНИ — КАТАЛОГ | АЛМАЗЫ (БРИЛЛИАНТЫ) — КАТАЛОГ

Физические свойства алмаза | Химические свойства алмаза | Какие бывают формы кристаллов алмаза | Окраска кристаллов алмаза | Черные бриллианты — природные и обработанные | Куллинан — самый крупный алмаз в мире

juvelirum.ru

Большая Энциклопедия Нефти и Газа

Cтраница 1

Кристаллическая решетка алмаза - атомная ( рис. 7 - 4, гл. Тетраэдрическое расположение атомов С в ней обусловливает твердость алмаза.  [1]

Кристаллическая решетка алмаза состоит из атомов углерода, соединенных между собой очень прочными ковалентны-ми ст-связями, образованными за счет перекрывания зр3 - гиб-ридных орбиталей атомов углерода и расположенными, следовательно, вокруг них под тетраэдрическими углами.  [2]

Кристаллическая решетка алмаза - атомная ( рис. V-5, стр. Тетраэдрическое расположение атомов С в ней ( рис. V-6) обусловливает твердость алмаза.  [3]

Элементарная ячейка алмаза.  [4]

Кристаллическая решетка алмаза представляет собой центрированный тетраэдр, который можно отнести к кубической системе, так как он вписывается в куб, а макроформа кристаллов алмаза представляет собой модифицированный куб.  [5]

Структура кристаллической решетки алмаза кубическая.  [6]

Структура фторида графита. [ IMAGE ] Диаграмма состояния углерода.  [7]

В кристаллической решетке алмаза ( см. разд. Известны кристаллы алмаза кубической и гексагональной сингоний. Гексагональный алмаз встречается в природе исключительно редко. Кристаллы кубической сингоний обычно имеют форму октаэдров. Изредка находят алмазы, окрашенные примесями в различные двета, они особенно1 ценятся. Значительная часть природных кристаллов темные, они ценятся меньше, чем прозрачные ювелирные алмазы и используются в основном для технических целей.  [8]

Структура фторида графита. [ IMAGE ] Диаграмма состояния углерода.  [9]

В кристаллической решетке алмаза ( см. разд. Известны кристаллы алмаза кубической и гексагональной сингоний. Гексагональный алмаз встречается в природе исключительно редко. Кристаллы кубической сингоний обычно имеют форму октаэдров. Изредка находят алмазы, окрашенные примесями в различные цвета, они особенно ценятся. Значительная часть природных кристаллов темные, они ценятся меньше, чем прозрачные ювелирные алмазы и используются в основном для технических целей.  [10]

Структурные комплексы в алмазоподобиой и аморфной структурах.  [11]

Вороного в кристаллической решетке алмаза; в, г - зигзагообразные упаковки структурных комплексов, упрощенных полиэдров Вороного; д - упаковка полиэдров п кристаллической решетке алмаза на основе замкнутого круга из шести атомов; е, ж - упаковки упрощенных полиэдров, приводящие к образованию пеитатональных колец; з - пентагоиалыюс кольцо; и - пентагональный аморфный додекаэдр.  [12]

Разница в строении кристаллических решеток алмаза и графита и объясняет резкое различие их физических свойств.  [13]

Разница в строении кристаллических решеток алмаза и графита и объясняет резкое различие их физических свойств. Графит очень мягок, он пишет, на бумаге, ибо его слои могуг легко скользить друг относительно друга. Алмаз - изолятор, в нем нет свободных электронов, графит является проводником электрического тока. Алмаз прозрачен, графит сильно поглощает свет.  [14]

Разница в строении кристаллических решеток алмаза и графита и объясняет резкое различие их физических свойств. Графит очень мягок, он пишет на бумаге, ибо его слои могут легко скользить друг относительно друга. Алмаз - изолятор, в нем нет свободных электронов, графит является проводником электрического тока. Алмаз прозрачен, графит сильно поглощает свет.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru


Смотрите также