Каталог
  

Серебро из чего состоит


Разновидности, свойства и применение сплавов серебра

Серебро (аргентум) — это металл, который известен человеку с древних времен. В природе серебро встречается в виде самородков. Металл обладает рядом неоспоримых преимуществ — он легко поддается ковке, не вступает в реакцию с другими металлами, обладает антибактериальными свойствами и т. д. Запасы серебра на планете по приблизительным подсчетам составляют 570 тысяч тонн, а добыча этого металла развита в таких странах, как Перу, Чили, Мексика и Австралия. Известно, что серебро, как и любой другой драгоценный металл, для производства ювелирных украшений не используется в чистом виде, поскольку он легко деформируется. Именно по этой причине серебро соединяется с другими металлами, придающими ему прочность, а такие соединения представляют собой сплавы серебра.

Виды и применение

Для оценки содержания аргентума в сплаве используется такой показатель, как проба. Он демонстрирует количественное содержание серебра в сплаве. Число пробы эквивалентно количеству граммов драгоценного металла в одном килограмме сплава. Что касается лигатуры (примесей других металлов), то она представлена в основном медью. Также в состав сплава меди и серебра могут входить такие металлы, как кадмий, никель, алюминий и цинк.

Сплавы серебра в ювелирных изделиях

В Российской Федерации и странах постсоветского пространства утверждены следующие пробы серебра: 720, 800, 875, 916, 925, 960, 999. Все сплавы серебра характеризуются определенными свойствами.

  1. 720: этот сплав считается наиболее низкопробным, так как в одном килограмме содержится всего 720 граммов драгоценной составляющей. Остальные 280 граммов приходятся на лигатуру, в которой преобладает медь. Она придает металлу желтоватый оттенок, поэтому серебро с пробой 720 не применяется в ювелирной промышленности. Однако из такого сплава успешно производятся пружины, иглы и другие детали, на которые может распределяться повышенная нагрузка. Такой сплав очень прочный, поэтому он характеризуется отменной износостойкостью. В России серебро с пробой 720 не подлежит клеймированию, а значит не может продаваться в ювелирных магазинах.
  2. 800: чистое серебро в таком сплаве содержится в количестве не более 800 граммов, в то время как на лигатуру, представленную медью, приходится 200 граммов. Для такого металла характерен желтый оттенок, поэтому сплав непригоден для изготовления ювелирных украшений. Однако свойства этого вида низкопробного серебра позволяют изготавливать из него предметы, которые предназначены для воздействия повышенных нагрузок. Речь идет о ручках, чашках и блюдцах для ежедневного использования, рукоятках ножей и прочего.
  3. 830: своими свойствами такой металл напоминает серебро с пробой 800, но разница заключается в том, что в сплаве с пробой 830 на 30 граммов больше содержится чистого драгоценного металла. Также не задействован в ювелирной промышленности.
  4. 875: серебро содержит как минимум 87,5% драгоценной составляющей, а остальные 12,5% приходятся на лигатуру. Характеризуется твердостью и износостойкостью. Такой сплав, в отличие от предыдущих, широко применяется в ювелирной промышленности. Сплав серебра с пробой 875 примечателен тем, что многие люди путают его с белым золотом, чем и пользуются недобросовестные продавцы или мошенники. Также на изделия из серебра с пробой 875 наносится позолота, что делает их похожими на золотые. Но каждый человек должен знать, что пробы 875 для золота не существует.
  5. 916: на 91,6% состоит из серебра, а на медь приходится лишь 8,4% драгоценной части. Такой металл существует, но ныне для производства украшений не применяется, хотя во времена СССР из серебра с пробой 916 изготавливали столовые приборы — чайники, соусники, сахарницы, кувшины, лопатки для торта и прочее.
  6. 925: так называемый серебряный стандарт. Такой металл обладает антикоррозионными свойствами. Вид серебра с пробой 925 характеризуется привлекательным серебристо-белым отливом, из-за чего такой металл великолепно выглядит в ювелирных изделиях, а также подчеркивает красоту драгоценных камней. Пластичность сплава позволяет использовать его для изготовления изделий, имеющих мелкие элементы, грани и т. д. Из такого серебра чеканились монеты английского фунта стерлингов, из-за чего сплав и стал называться стерлинговым.
  7. 960: состав такого металла мало чем отличается от того, который характерен для чистого аргентума, ведь в нем содержится не менее 96% драгоценной части. Из такого сплава изготавливают высококачественные изделия, покрытые эмалью, а также для изготовления украшений с тонкой художественной работой, рельефными композициями и т. д. Однако у украшений, произведенных из серебра с пробой 960, есть недостаток — они легко деформируются, а значит, требуют особого ухода и бережного отношения к себе.
  8. 999: чистый металл применяется лишь для производства слитков и коллекционных монет.

Также существуют сплавы, содержащие серебро и большое количество лигатуры, к примеру, до 75% меди. Изделия из них не реализуются на ювелирном рынке, однако из подобных сплавов производятся эстетически привлекательные изделия. Популярным сплавом является шибуичи, состоящий на три четверти из меди и на четверть — из серебра. Материал используется для изготовления брошей, колец, сережек, браслетов и рукояток ножей.

Мельхиор — это еще один сплав, имитирующий серебро, и он состоит из никеля, железа и марганца. Сплав-имитация очень пластичный, поэтому поддается механической обработке. К дополнительным преимуществам мельхиора можно отнести его антикоррозионные свойства. Также мельхиор устойчив к воздействию соленой воды. Мельхиор широко применяется в изготовлении бижутерии и столовых приборов с напылением серебра. Внешний вид сплава также позволяет изготавливать из него подделки ювелирных украшений, чем и пользуются мошенники.

Свойства сплавов

Сплавы серебра, кроме драгоценного металла, содержат в себе примеси, которые и определяют свойства серебра:

  • никель: усиливает прочность металла;
  • свинец: придает серебру хрупкость при нагреве;
  • олово: при незначительном содержании в сплаве понижает температуру плавления серебра, но если олова будет более 9%, то сплав станет слишком хрупким;
  • алюминий: также придает серебру хрупкость;
  • цинк и кадмий: понижают температуру плавления серебра, поэтому используются для изготовления серебряных припоев.

Сплавы драгоценного металла широко применяются в промышленном производстве. К примеру, так называемое техническое серебро (или металл с пробой 999), добытое путем аффинажа. Такой металл отлично проводит тепло и электроток, а также обладает светоотражающим свойством, что позволяет использовать его для изготовления высокоточных зеркал.

Серебро также входит в состав припоев, предназначенных для пайки элементов ювелирных изделий, швов и т. д. Металл также применяется в изготовлении серебряно-цинковых аккумуляторов и батарей.

Аргентум широко применяется в медицине, а все благодаря его дезинфицирующим свойствам, к примеру, серебро эффективно дезинфицирует воду.

Если человек желает приобрести качественные изделия из серебра, он должен делать покупку в ювелирном салоне или магазине, в котором реализуется сертифицированный товар. Не рекомендуется покупать драгоценные украшения у частных лиц, так как в таком случае существует высокий риск приобретения подделки.

Рекомендуем другие статьи

dedpodaril.com

СЕРЕБРО

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

СЕРЕБРО (Argentum) Ag, хим. элемент I гр. периодич. системы, ат. н. 47, ат. м. 107,8682; относится к благородным металлам. Природное серебро состоит из двух стабильных изотопов: 107Ag (51,35%) и 109Ag (48,65%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 6,2·10-27 м2. Конфигурация внеш. электронных оболочек атома 4s24p64d105s1; степени окисления + 1 (наиб. устойчива), + 2 и +3; энергии ионизации при переходе Ag0 : : Ag+ : Ag2+ 7,57632, 21,487 эВ; сродство к электрону 1,301 эВ; электроотрицательность по Полингу 1,93; атомный радиус 0,145 нм, ионные радиусы (в скобках даны координац. числа), нм: Ag+ 0,100 (4) и 0,115 (6), Ag2+ 0,079 (4) и 0,094 (6). Серебро-самый распространенный из благородных металлов, его содержание в земной коре оценивают в 7·10-6 % по массе, в морской воде -1,5·10-8-2,9·10-7 %, пресной -2,7·10-8 %. Известно более 60 серебросодержащих минералов, делящихся на 6 групп: самородное серебро и сплавы его с Си и Аu; простые сульфиды серебра -акантит и аргентит Ag2S; теллуриды и селениды серебра-гессит Ag2Te, науманит Ag2Se, эвкайрит AgCuSe и др.; антимониды и арсениды серебра-дискразит Ag3Sb и др.; галогениды и сульфаты серебра - кераргирит AgCl, аргентоярозит AgFe3(SO4)2(ОН)6 и др.; сложные сульфиды, или тиосоли, типа nAg2S·mM2S3, где М = As, Sb, Bi, напр. пираргирит Ag3SbS3, прустит Ag3AsS3, полибазит (Ag, Cu)16Sb2S11 и т.п. Все минер. месторождения делятся на собственно серебряные руды, в к-рых содержание серебра превышает 50%, и комплексные полиметаллич. руды цветных и тяжелых металлов с содержанием серебра не выше 10-15%. Комплексные месторождения обеспечивают примерно 80% добычи серебра (в качестве побочного продукта переработки сульфидных руд) в зарубежных странах, причем 40-50% из этого кол-ва серебра извлекают из цинковых руд, по 15-20%-из кобальтовых и медных, а остальное-из сурьмяных и смешанных руд. Осн. месторождения таких руд сосредоточены в Мексике, Канаде, Австралии, Перу, США, Боливии и Японии. На долю указанных стран приходится 70-80% добычи первичного серебра. Общие запасы серебра в развитых и развивающихся странах 505 тыс. т (1986), в т. ч. подтвержденные 360 тыс. т.

Свойства. Серебро-белый блестящий металл, в тонких пленках и проходящем свете-голубого цвета. Кристаллизуется в гранецентрир. кубич. решетке, а = 0,4086 нм, z = 4, пространств. группа Fm3m; т. пл. 961,93 °С, т. кип. 2167°С; плотн. 10,491 г/см3; 25,36 Дж/(моль·К); DHпл 11,30 кДж/моль, DHисп 251,5 кДж/моль; 42,55 Дж/(моль·К); ур-ния температурной зависимости давления пара над жидким серебром lgp(aтм) = -1,368·104/Т+ 5.615, плотн. жидкого серебра d = = 10,465 - 9,67·10-4 Т г/см3; tкрит 4395°С, pкрит 33,6 МПа и uкрит 339 см3/моль. Серебро обладает наиб. теплопроводностью и электрич. проводимостью: r 1,59 (0°С) и 8,4 мкОм·см (960 °С), теплопроводность 419 (293 К) и 377 Вт/(м·К) при 773 К. Примеси в серебре уменьшают его · теплопроводность и электрич. проводимость. Серебро диамагнитно, его магн. восприимчивость (—0,181·10-9) не зависит от т-ры; коэф. Холла —0,9·1010. Серебро обладает высокой отражат. способностью: в ИК диапазоне степень отражения лучей составляет 98%, в видимой области спектра-95% и снижается до 10% при длине волны 320 нм. Серебро-мягкий и пластичный металл; предел текучести составляет 10-50 МПа; твердость по Бринеллю 245-250 МПа, по Виккерсу 148-154 МПа; модуль упругости 82,7 ГПа, модуль сдвига 30,3 ГПа.

Из благородных металлов серебро-наиб. реакционноспособно. Тем не менее серебро химически мало активно и легко вытесняется из своих соед. более активными металлами. Углем, Н2 и др. восстановителями ионы серебра восстанавливаются до Ag0. Стандартный электродный потенциал Ag+/Ag0 0,799 В. При комнатной т-ре серебро не взаимод. с О2 воздуха, но при нагр. до 170°С покрывается пленкой оксида Ag2O. Озон в присут. влаги окисляет серебро до высших оксидов-Ag2O2 и Ag2O3. При взаимод. нагретого серебра с S или Н2S в присут. О2 образуется серебра сульфид Ag2 S. Халькогены, фосфор, мышьяк и углерод реагируют с нагретым серебром с образованием соответствующих бинарных соединений. Серебро легко раств. в разб. и конц. HNO3 с образованием серебра нитрата AgNO3. При нагр. Ag раств. и в конц. h3SO4, давая сульфат Ag2SO4. Галогены в присут. влаги, а также конц. галогеноводород-ные к-ты медленно реагируют с металлическим серебром, давая серебра галогениды AgX. В присут. О2 серебро легко раств. в р-рах цианидов щелочных металлов с образованием комплексных цианидов M1[Ag(CN)2]. Расплавл. щелочи и орг. к-ты не действуют на металлическое серебро.

Известны многочисл. комплексные соединения серебра, в к-рых координац. число серебра равно 2, 3 и 4.

Большинство соед. Ag(I) плохо раств. в воде, за исключением AgF, AgNO3, AgClO4 и AgClO3. Соли серебра-бесцв. или слегка желтоватые в-ва. На свету почти все соед. Ag(I) разлагаются до свободного серебра и при этом окрашиваются в серый или черный цвет, что используется в фотографии. Соединения серебра термодинамически мало устойчивы, причем углерод- и азотсодержащие соед. Ag(I) способны к разложению со взрывом.

Оксид Ag(I) (гемиоксид) Ag2O при нагр. выше 100°С разлагается до Ag и О2; р-римость в воде 1,3·10 3 г в 100 г воды (см. также табл.); водные р-ры Ag2O имеют щелочную р-цию вследствие частичного образования AgOH; в водной суспензии легко восстанавливается до металлического серебра водородом, СО, металлами и др. восстановителями; раств. в к-тах, водном Nh4, цианидах и тиосульфатах щелочных металлов с образованием соответствующих простых и комплексных солей Ag(I); теряет на свету О2; диамагнитен; получают при обработке р-ра AgNO3 щелочами, применяют в гопкалитовых патронах противогазов, как окислитель в орг. синтезе; водные р-ры-антисептич. ср-во. Монооксид Ag2O2 (или AgIAgIIIO2)-серые кристаллы моноклинной сингонии; разлагается выше 100 °С; —24,7 кДж/моль; получают окислением серебра или Ag2 О озоном, анодным окислением серебра, используют для изготовления электродов в серебряно-цинковых элементах и аккумуляторах.

Гидроксид AgOH, по непроверенным сведениям, м.б. получен в виде неустойчивого белого осадка при обработке р-ра AgNO3 в этаноле спиртовым р-ром КОН при — 45 °С; обладает амфотерными св-вами с преобладанием диссоциации по щелочному типу; для бесконечно разб. р-ров -124,36 кДж/моль, 61,70 Дж/(моль · К).

Сульфат Ag2SO4 при 427°С переходит из ромбич. a-модификации в гексагон. b-модификацию, DH перехода 18,64 кДж/моль; выше 1100°С разлагается до Ag, SO2 и О2; р-римость в воде 0,8 г в 100 г при 20°С; в сернокислотных р-рах легко восстанавливается FeSO4, Zn и Mg до Ag0; получают действием конц. h3SO4 на Ag или Ag2O или обменной р-цией р-римых солей серебра с сульфатами металлов, в избытке h3SO4 образуются гидросульфат AgHSO4 и ад-дукты Ag2SO4 c h3SO4.

Карбонат Ag2СО3 выше 120 °С разлагается до Ag, CO2 и О2; р-римость в воде 3·10-3 г в 100 г, раств. в водном Nh4, цианидах и тиосульфатах щелочных металлов, с карбонатами др. металлов образует двойные карбонаты; получают действием р-ров карбонатов или гидрокарбонатов металлов на AgNO3.

Цианид AgCN практически не раств. в воде (2·10-5 г в 100 г), в водном р-ре с избытком KCN образует комплексный цианоаргентат K[Ag(CN)2], при действии к-т на цианоаргентаты выделяется синильная к-та HCN; получают действием р-ров KCN или NaCN на стехиометрич. кол-во AgNO3; компонент электролитов при гальванич. серебрении, применяют также в произ-ве нитрилов и изо-нитрилов; ПДК 0,3 мг/м3 (в пересчете на HCN).

Специфич. хим. св-во серебра-способность легко образовывать коллоидное серебро в р-ре при восстановлении соединений серебра или при диспергировании компактного металла. Золи серебра окрашены в разл. цвета-от фиолетового до оранжевого—в зависимости от размера частиц металла и способа получения золя. Серебро в коллоидном состоянии-энергичный восстановитель, катализатор окисления, бактерицидный препарат (колларгол, протаргол). Бактерицидные св-ва присущи и металлическому серебру: при концентрации серебра в р-ре 40-200 мкг/л погибают неспоровые бактерии, а при более высоких концентрациях - споровые.

Серебро хорошо адсорбирует газы, такие, как Н2, О2, Аr и др. Так, при 500 °С Ag может поглощать до 5 объемов О2. При охлаждении жидкого серебра, содержащего растворенный в нем О2, выделение газа может происходить со взрывом.

Серебро образует множество интерметаллидов и сплавов с др. металлами. Так, с Pd и Аu серебро дает непрерывный ряд твердых р-ров, с Сu, Ni и Pb-эвтектич. сплавы, а с остальными металлами - интерметаллиды разл. состава. Введение металлов в серебро часто улучшает его мех. и хим. св-ва.

Получение. Первая стадия переработки всех серебросо-держащих руд-флотац. и гравитац. обогащение. Дальнейшие методы выделения серебра зависят от типа руды и содержания серебра и делятся на пирометаллургич. и гидрометаллургические. Полиметаллич. сульфидные руды не поддаются прямой гидрометаллургич. переработке и их вначале подвергают обжигу-окислительному, восстановительному (или хлорирующему). При обжиге свинцовых руд Ag2S концентрируется в оксиде Рb и затем в металлич. Рb. Для выделения серебра из Рb применяют методы Паркеса и Паттинсо-на. По методу Паркеса серебросодержащий Рb плавят вместе с Zn и серебро концентрируется в Zn в виде интерметаллидов. После отгонки Zn остаток купелируют (нагревают в печи в потоке воздуха) и отделяют сырое металлическое серебро от оксидов остальных металлов.

По методу Паттинсона серебросодержащий Рb медленно охлаждают и при этом вначале кристаллизуется чистый Рb, к-рый отделяют от расплава; остается сплав Рb с Ag с содержанием серебра 2-3%, к-рый перерабатывают далее купелированием.

При переработке медных руд после окислит. и восстановит. плавок получают сплавы Сu с Ag, из к-рых серебро выделяют электролизом. Из сплава отливают аноды и при их растворении Си осаждается на катоде, а серебро концентрируется в шламе.

Собственно серебряные руды перерабатывают после обогащения методом цианирования, для чего руду обрабатывают в водном р-ре NaCN или KCN в присут. О2 и затем серебро извлекают из комплексных цианидов восстановлением металлами или с использованием анионитов. В осн. история, интерес представляет сейчас амальгамный метод извлечения серебра, по к-рому руда смешивается в р-ре с Hg и хлоридами, при этом образуется амальгама серебра; из нее после отгонки Hg получают сырое серебро.

Для получения серебра высокой чистоты (99,999%) сырой металл подвергают электролитич. аффинажу в р-ре AgNO3 с осаждением серебра на катоде (примеси переходят в шлам).

Все серебросодержащие отходы пром-сти (отработанные фотоматериалы, контакты, источники питания и т. п.) также подвергаются переработке с целью извлечения вторичного серебра, к-рое вновь расходуется в пром-сти в кол-ве 60-70% от общего потребления серебра.

Определение. Качественно серебро обнаруживают по цветным р-циям образования комплексов серебра с использованием орг. N- и S-содержащих реагентов (производные роданина, фе-нилтиомочевины, дитизона и т.п.). Применяют также восстановление серебра из р-ра до металла и микрокристаллич. р-ции образования AgCl, Ag2Cr2O7 и комплекса серебра с уротропином.

Количественно серебро определяют гравиметрически (осаждение серебра в виде AgCl или комплекса серебра с бензотриазолом), титриметрически по Фольгарду с использованием р-ров KCNS или Nh5CNS в присут. железо-аммониевых квасцов. Применяют колориметрич. методы с использованием производных роданина и дитизона, каталиметрич. (основанные на измерении скорости р-ции в присут. микрокол-в серебра), а также эмиссионно-спектральный и атомно-абсорбционный методы анализа.

Применение. Примерно 30-40% производимого серебра расходуют на изготовление кино- и фотоматериалов. Ок. 20% серебра в виде сплавов с Pd, Аu, Сu, Zn и др. металлами идет на изготовление контактов, припоев, проводящих слоев, элементов реле и др. устройств в электротехнике и электронике. Сплавы серебра с Аu и Сu, а также с Hg, Sn, Zn и Си используют в стоматологии для пломбирования и протезирования. 20-25% серебра расходуют на изготовление элементов питания-серебряно-цинковых аккумуляторов, обладающих высокой энергоемкостью (космич. и оборонная техника), оксидно-серебряных элементов питания часов и т.п. Из серебра изготовляют монеты, ювелирные изделия, украшения, столовую посуду. Серебро используют для серебрения зеркал, аппаратов в пищ. пром-сти, как катализатор процессов дожигания СО, восстановления NO и р-ций окисления в орг. синтезе.

Объем произ-ва первичного серебрс в мире колеблется в зависимости от цен на рынке. В связи с тем, что серебро-второй валютный металл, сведения о масштабах его произ-ва и потребления являются оценочными. В сер. 80-х гг. произ-во первичного серебра в развитых и развивающихся странах оценивалось в 10-15 тыс. т/год.

ПДК серебра в воздухе 0,1-0,5 мг/м3. При попадании р-римых соединений серебра на кожу и слизистые оболочки происходит восстановление серебра до серо-черного коллоидного металла. Это окрашивание пов-сти тканей (аргирия) исчезает в результате растворения и истирания коллоидного серебра вместе с кожей.

Серебро известно человеку с древнейших времен, еще в 4-м тыс. до н.э. оно использовалось для изготовления украшений, служило торговым эквивалентом в странах Востока.

Лит.: Пятницкий И. В., Сухан В. В., Аналитическая химия серебра, М., 1975; Малышев В.М., Румянцев Д. В., Серебро, 2 изд., М., 1987; Silver. Economics, metallurgy and use, Princeton (N.Y.), 1967; Thompson N. R., в кн.: Masscy A. G., The chemistry of cooper, Oxf., 1975. П.М. Чукуров.

АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ

Еще по теме:

  • Серебро - справочник по веществам
___

www.xumuk.ru

Серебро

СЕРЕБРО, Ag (лат. argentum * а. silver; н. Silber; ф. argent; и. plata), — химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,8682, относится к благородным металлам. Природное серебро состоит из двух стабильных изотопов 107Ag (51,839%) и 109Ag (48,161%); известно также более 35 радиоактивных изотопов и изомеров серебра с массовыми числами от 99 до 123, самый долгоживущий из которых имеет период полураспада 130 лет (108Ag).

История серебра

Серебро, наряду с золотом и медью, относится к первым металлам цивилизации. В 4-м тысячелетии до н.э. серебро в виде кусков и слитков служило торговым эквивалентом в странах Ближнего и Среднего Востока, ювелирные изделия из серебра были известны в Египте, Китае. Самые древние разработки серебра, относящиеся к 3-му тысячелетию до н.э., обнаружены в восточной части Малой Азии, где оно извлекалось из свинцовых руд. В 1-м тысячелетии до н.э. началась крупномасштабная разработка серебра в Греции. В средние века центр добычи серебра перемещается в Испанию, Богемию и Трансильванию, позже (16-18 вв.) — в страны Латинской Америки (Мексика, Боливия, Перу). В России возникновение серебродобывающей промышленности связано с освоением в 18 веке крупных серебряно-полиметаллических месторождений Забайкалья и Алтая.

Характеристика серебра

В свободном состоянии серебро — мягкий белый металл, кристаллическая решётка гранецентрированная кубическая (а = 0,40772 нм). Плотность (при 293,15 К) 10500кг/м3; t плавления=961,9°С; t кипения=2212°С; теплоёмкость 25,3 Дж/(моль•К); температурный коэффициент линейного расширения в среднем 2,061•10-5 К-1 (273,15-723,15 К); теплопроводность Вт/(м•К): 426,24 (при 90,15 К), 418,7 (273,15 К), 410,33 (373,15 К), 355,9 (723,15 К); удельное электрическое сопротивление (Ом•м): 1,59•10-8 (293,15 К), 0,00793•10-8 (15 К). Отражательная способность серебра при длинах волн (нм): 10000, 5000, 1000, 500, 400, 300, 200 составляет соответственно (%) 99; 98,5; 96; 90; 84; 20; 27; при l = 316 нм наблюдается минимум отражательной способности, равный 4,2%. Поверхностное натяжение серебра 1,14 Н/м (1143,15-1218,15 К); модуль упругости 750 МПа; относительное удлинение 60%; твёрдость по Бринеллю 24,52 кПа. По сравнению с другими металлами серебро характеризуется наивысшей электро- и теплопроводностью. Легко поддаётся ковке и легко полируется.

Для серебра характерна степень окисления +1 (чаще всего), +2, +3, редко +4. серебро устойчиво по отношению к кислороду воздуха, при повышении температуры и давления образует оксид Аg2О. Расплавленное серебро поглощает до 22 объёмов кислорода. Не реагирует даже при высоких температурах с азотом и углеродом, при нагревании реагирует с парами серы (образуя Ag2S) и свободными галогенами (давая галогениды). Серебро не взаимодействует с соляной и разбавленной серной кислотами. Реагирует с концентрированной серной кислотой и азотной кислотой.

Растворы щелочей и органические кислоты не действуют на серебро. Соли серебра малорастворимы, за исключением нитрата, фторида и перхлората. Растворимые соли серебра бесцветны и ядовиты (ПДК 0,01 мг/м3). Большинство солей серебра светочувствительны, особенно в присутствии органических примесей.

Серебро в природе

Из благородных металлов серебро наиболее широко распространено в природе. Серебро обогащено сульфидной фазой метеоритов, что согласуется с халькофильной природой элемента. Содержание серебра в земной коре составляет 7•10-6% (по массе). Ультраосновные и кислые горные породы содержат несколько меньше серебра (5•10-6%), чем основные; осадочные (1•10-5%). В горных породах серебро концентрируется в сульфидах, некоторое количество может присутствовать в мусковите и полевых шпатах, вероятно, замещая натрий и калий в этих минералах. Значительная часть серебра в породах находится в самородном состоянии. Следы серебра (около 0,02 мг на 100 г сухого вещества) содержатся в организмах. Содержание серебра в морской и океанской воде варьирует в интервале от 1,5•10-8% до 2,9•10-7% (по массе). Средняя величина для пресных вод около 2,7•10-8% (по массе).

Непрерывный изоморфный ряд серебро образует с золотом, тем не менее, в природе серебро встречается главным образом в виде серебра самородного. Чрезвычайно разнообразны природные халькогениды, достаточно часто в рудах встречаются теллуриды, известны галогениды серебра. В зоне окисления рудных месторождений описан сульфат серебра — аргентоярозит. Об основных генетических типах месторождений серебра см. в ст. Серебряные руды.

Подвижность серебра в природных процессах главным образом связана с гидротермальными растворами. В хлоридных гидротермах преобладают хлоркомплексы серебра состава AgCl и AgCl2. Проявление комплексообразования серебра с карбонатными ионами при 25°С приходится на область высоких pH и лишь при очень высоких концентрациях углекислоты возможно преобладание AgCО3 в слабощелочных растворах (pH = 8). С ростом температуры поле преобладания карбонатных комплексов сокращается. В области высоких концентраций сульфидной серы доминируют гидросульфидные комплексы AgHS и Ag(HS)2-.

Добыча серебра

Большая часть добываемого серебра получается при переработке сульфидных руд Pb, Zn и Cu, содержащих примеси серебра: из черновой меди — в процессе электролитического рафинирования, из чернового свинца (веркблея) — с помощью цинка. При добыче серебра из серебряных руд его извлекают гравитационным обогащением или амальгамацией (редко), пенной сепарацией, флотацией, цианированием.

Применение серебра

Серебро используют, главным образом в виде сплавов для чеканки монет, изготовления ювелирных изделий, лабораторной посуды; для серебрения, например, аппаратов в пищевой промышленности, зеркал, для изготовления деталей электровакуумных приборов, электрических контактов, электродов. Мелкораздробленное серебро применяется в санитарной технике и медицине для обеззараживания воды. Коллоидное серебро, оказывающее антисептическое действие на слизистую оболочку, используют в составе таких препаратов, как аргирол, протаргол, колларгол. Соединения серебра применяют при производстве фотографических материалов.

www.mining-enc.ru

Техническое серебро: области применения, свойства и стоимость материала

На потребительское рынке серебро относят к классу драгоценных металлов, однако в чистом виде оно зачастую широко используется в промышленности, обеспечивая работоспособность различным электроприборам.

Более того, ранее оно применялось в создании фотоаппаратуры и зеркал, благодаря светоотражающей поверхности. Но не стоит путать этот металл с ювелирным сплавом - разница между ними довольно существенна, и это не только вопрос стоимости.

Что такое техническое серебро

Несмотря на название, намекающее на низкокачественность материала, под данным термином скрывается чистое серебро 999 пробы, сплав с добавлением меди или металлокерамические композиты.

Добывается оно из свинцовых руд и зачастую выглядит не слишком привлекательно.

Лигатуры, добавляемые в техническое серебро, имеют строго определённый состав. Он выбирается в соответствии с требуемыми областью применения поправками в химических и физических свойствах металла и обычно призван повысить электропроводность или прочность элемента.

В изготовлении украшений используются абсолютно иные примеси, придающие материалу более привлекательный внешний вид и ковкость, что также определяет и более низкую стоимость технического сплава.

Свойства металла

Техническое серебро обладает перечнем физических качеств, позволяющих применять его в сфере электроники для изготовления различных деталей. Ряд этих характеристик включает в себя такие параметры, как:

  • низкая температура плавления;
  • высокий уровень тепло- и электропроводности;
  • мягкость и гибкость материала;
  • инертность (пассивен к агрессивным реагентам);
  • хорошая светоотражательная способность;
  • устойчивость к коррозии;
  • механическая прочность.

Однако при этом ювелирный сплав имеет более высокую стоимость, чем техническое серебро. Цена за 1 грамм такого металла поднимется за счёт дорогостоящей очистки от свинца, опасного для здоровья человека из-за склонности к накоплению в тканях организма. Однако в радиотехнике это играет второстепенную роль, потому никак не влияет на сбыт материала.

Прежде всего, стоит отметить, что техническое серебро может быть получено методом вторичной переработки аппаратуры, содержащей детали из драгоценного металла. В этом случае после извлечения из лома состав переплавленного материала не поддаётся нормированию и отправляется на аффинажный завод для селекции, иначе возможность его дальнейшего использования отпадает.

Чистое серебро и регламентированные ГОСТом составы применяются в следующих отраслях:

  • электроника;
  • пищевая промышленность (изготовление оборудования для хранения);
  • медицина и стоматология;
  • авиа и ракетостроение.

Стоит отметить, что техническое серебро (цена за 1 грамм сильно зависит от сплава) используют практически во всех производственных сферах, а метод переработки стал основным способом его получения.

Где встречается серебро

На сегодняшний день извлечь из аппаратуры и продать серебряную деталь вправе любой её владелец. Наиболее ценными, с этой точки зрения, будут механизмы старого образца, например электромагнитные пускатели: в них находятся напайки из драгметалла.

Материал без примесей встречается в распространённых типах реле, термодатчиках (серебряная проволока), сц-аккумуляторах и амальгаме.

В очень малом количестве может встречаться в авиационных проводах и коннекторах.

Чтобы проверить подлинность металла, многие используют смесь из азотной кислоты и бихромата калия: если серебро настоящее, смоченное составом место приобретёт красный цвет.

Продажа металла и его стоимость

В интернете или на радиорынке можно продать техническое серебро. Цена за грамм варьируется в зависимости от двух факторов:

  1. Пробы, т. е. процентного содержания в сплаве.
  2. Места сбыта, поскольку каждый покупатель ставит выгодную для себя стоимость.

Людям, ранее не сталкивавшимся с оценкой чистоты металла, лучше обратиться к услугам профессионалов или же разбираться на месте. Однако первый вариант обеспечит большую уверенность в правильности выставленной стоимости и уменьшит риск продажи по заниженной цене.

При сбыте металлического лома наиболее популярны столовые приборы или детали с серебряным напылением, поскольку они имеют довольно высокую пробу. В любом случае куда выгоднее совершать продажу через интернет-аукционы или тематические форумы - на просторах интернета часто находятся покупатели, готовые предложить более высокую стоимость.

Желающим узнать, сколько стоит техническое серебро, стоит внимательнее изучить различные предложения и выбрать то, что отвечает их требованиям. В общем, цена за 1 грамм составляет примерно от 20 до 32 рублей; эта разница напрямую связана с процентным содержанием чистого драгметалла в сплаве или пришедшем в негодность изделии.

fb.ru


Смотрите также