Каталог
  

Синтетические алмазы производство


Производство искусственных алмазов! | Политика, экономика, общество (без банов)

Словосочетание «белорусские бриллианты» для нашего уха звучит так же, как и «белорусские креветки». Но не торопитесь с шутками. Мало кто знает, что в девяностые в Беларуси построили один из первых в мире заводов по синтезу алмазов, что за белорусскими учеными из этой сферы готовы гоняться мировые промгиганты, а качество кристаллов оценили на международном уровне.

Первый в мире синтезированный алмаз получила компания General Electric еще в 1950-х годах при помощи специального пресса. Небольшой грязный камешек по свойствам ничем не отличался от природных алмазов. Была только одна загвоздка: денег на его синтез нужно было гораздо больше, чем при добыче в природе. На это дело махнули рукой и до 1980-х годов про выращивание алмазов благополучно забыли.

Одни из первых попыток получить алмазы с помощью электродуговой печи.  В конце 1980-х ученые из Новосибирского отделения Российской академии наук создали беспрессовый аппарат «разрезная сфера» (БАРС), при помощи которого впервые в мире получили синтезированный алмаз, готовый конкурировать с природным не только по качеству, но и по себестоимости. У первых синтезированных новосибирских алмазов она была значительно ниже.

Отставной генерал, семеро ученых и $5 млн

После удачной апробации в 1990-х семеро известных советских ученых (двое из них — белорусы) загорелись идеей создать первый в мире завод по синтезу алмазов. Площадкой благодаря хорошему географическому положению выбрали Беларусь.

Ученые стали учредителями компании «Адамас». Они взяли в «Промстройбанке» СССР кредит на 51 млн советских рублей и начали строительство в деревне Атолино, что под Минском.

Аппараты БАРС.

Завод должен был быть довольно крупным: трехэтажное здание, 220 работников. Но денег не хватало, поэтому позже в состав учредителей вошли тогдашний «Белпромстройбанк», который выделил предприятию кредитную линию в $5 млн, а также двое известных в советские времена бизнесменов, внесших еще $2,5 млн.

Инвесторы успели только завершить здание, поставить 120 аппаратов БАРС и немного отработать технологию, как тут у бизнесменов-учредителей начались проблемы — они оставили завод без денег.

Неожиданно четверых ученых переманивает в США генерал в отставке Картер Кларк. Оказывается, в 1995 году он за $60 тыс. купил технологию производства синтезированных алмазов и основал компанию Gemesis Diamond. К слову, все было оформлено официально, так как России на то время остро нужны были деньги и она распродавала свои научные разработки. Ученые оставили «Адамас» и уехали к Кларку.

Один из крупнейших производителей синтезированных алмазов в мире.

Оказавшись в тяжелом положении, учредители пытались вернуть кредитные деньги банку, но тщетно. В 1999 году в отношении руководства «Адамаса» возбудили уголовное дело. Разбирательство шло пять лет, сумму ущерба оценили в $7 млн. Бизнесмены и юрист уехали за границу. Однако четверых

все же посадили.

После выхода на свободу никто из прежних руководителей «Адамаса» в Атолино не вернулся. Уехали в Санкт-Петербург и Москву и оставшиеся трое ученых, а с ними — и технология синтеза алмазов.

Первые синтетические бриллианты.

Так в мире появилось три крупнейших центра синтезированных алмазов: Москва, Питер и американский штат Флорида. Есть еще несколько мелких

компаний, но говорят, что все ниточки ведут все к тем же семерым.

Что все это время происходило с самим заводом? Его передали на баланс Белгосуниверситета. В одной из частей здания функционировало предприятие РУП «Адамас БГУ»: ученые проводили исследования, изучали производство технических алмазов, совершенствовали его. Правда, эксплуатация установок обходилась очень дорого и финансовый вопрос становился все острее.

Белорусские бриллианты

«Когда китайцы, арабы и израильтяне стали уговаривать продать производство, стало понятно: спрос есть» На краю Атолино стоит то самое трехэтажное здание завода, о котором так грезили советские ученые — обычное производство с крашеными стенами и свежим ремонтом внутри. На проходной здесь — милиционер и строгий пропускной режим.

Несколько лет назад предприятие «Адамас БГУ» перешло в структуру Управления делами президента. А чуть больше года назад проректора Академии управления при президенте Максима Борда попросили оценить ситуацию в Атолино: есть смысл наладить там производство или же проще

сдать аппараты в утиль?

— Признаюсь сразу: по образованию я юрист и тема производства алмазов для меня была нова, — Максим Наумович ведет нас в цех. — Я стал штудировать литературу, смотреть зарубежный опыт. Честно, сам не верил в то, что наши кристаллы на самом деле хорошие и их можно продавать. Но поездил по выставкам, показывал алмазы, ограненные бриллианты, которые вырастили у нас в цеху, — специалисты восторгались качеством. А когда стали звонить армяне, китайцы, израильтяне с уговорами продать оборудование, уже окончательно понял: перспективы есть.

Так в ноябре 2016 года появилось ООО «АдамасИнвест» (предыдущее предприятие сейчас на стадии ликвидации). Оно также подчиняется Управлению делами президента и работает по специальному проекту «Восстановление производства синтезированных алмазов и развитие ювелирного производства изделий со вставками из получаемых бриллиантов».

Работает здесь 45 человек.

— Под этот проект мы получили заем. Деньги возвратные, есть четкие сроки, — подчеркивает Максим Наумович. — Мы разработали подробный бизнес-план, за полгода привели в порядок здание, восстановили цех и запустили ювелирное производство. Фактически на него мы сейчас и делаем упор.

На рынок технических алмазов, по словам Максима Наумовича, смысла идти нет: всех игроков уложил на лопатки Китай. Девять лет назад Киевский инструментальный завод продал КНР образец специального пресса. Китай наштамповал их 40 тыс. штук, в 2014 году вышел на рынок технических алмазов и обвалил его в 20 раз. Поэтому даже несмотря на то, что белорусские технические алмазы по качеству превосходят китайские, стоят

они впятеро дороже.

— На ювелирный рынок Китай пока не идет. Думаю, его не пускают два крупнейших игрока: подконтрольная США De Beers и российская «Алросса». Поэтому в синтезе ювелирных алмазов у нас неплохие шансы, — заключает

Максим Борд.

Температура может вырасти до 2 тыс. градусов, давление — до 20 тыс. атмосфер Огромный зал с десятками цилиндров и минимум рабочих — так выглядит цех с теми самыми БАРСами, которых здесь 120 штук. Обслужить все аппараты за смену могут слесарь и инженер. Всего же в цеху работает 10 человек.

— Они проектировались в 1970-х, но в производстве алмазов для ювелирных целей и лучше БАРСов пока не найти, — показывает раскрытую полусферу Максим Наумович. — Вообще, в настоящее время в мире существует две технологии получения алмазов: HTHP (high temperature, high pressure — высокая температура, высокое давление) и CVD (chemical vapor deposition — химическое осаждение из паровой фазы). Последняя хороша для производства технических алмазов, но не очень пригодна для ювелирных. Дело в том, что в газовой среде камень растет ровными слоями, а в природе — неравномерно, как и при технологии HTHP, которую мы

используем.

Максим Наумович показывает пульт управления цилиндрами. Это специальная аппаратура, которая контролируется вручную. При малейших отклонениях от заданных значений работники регулируют показатели.

— Казалось бы, пусть бы компьютер следил за тем, как растут алмазы. И у меня, честно говоря, были мысли автоматизировать этот процесс, — рассуждает директор. — Но когда я увидел нашу технологию, то понял: смысла нет. Во-первых, дорого, вложения не окупятся. Во-вторых, рост алмазов зависит от десятка нюансов: например, от перепадов температуры во внешней среде на различных этапах. Сможет ли компьютер учесть все эти нюансы и среагировать, как человек? Мы думаем, что пока нет.

Сами БАРСы устроены довольно просто: 3,5 тонны металла, шланг для подачи масла, которое создает давление, и контакты, дающие ток и температуру. Внутри аппарата — две сферы: большая и поменьше. Каждая сфера состоит из шести частей — пуансонов, изготовленных из специального легированного сплава. Большие весят по 16 килограммов, маленькие — чуть меньше килограмма. Маленькие пуансоны — это фактически расходный материал. Они стоят по $200 и выходят из строя в среднем после пяти синтезов.

— Температура на входе в аппарат — 1500 градусов, давление — 1800 атмосфер, — объясняет директор. — Внутри температура может вырасти до 2 тыс. градусов, а давление — до 10—20 тыс. Температура и давление меняются на протяжении всего роста алмаза. Это трое суток, а не

столетия, как в природе.

В самом центре сферы находится специальный фарфоровый кубик. В нем, как говорит Максим Наумович, и есть «вся наука». Перед тем как кубик отправят в БАРС, его «фаршируют»: закладывают специальную спрессованную таблетку, состоящую из отдельных компонентов, как правило, металлов, здесь же и маленький кусочек алмазика, который потом вырастает в большой камень и графитовый стержень (графит — это среда, которая дает алмазу возможность расти). Потом кубик сушится в печи, пропитывается определенными материалами, и только после всех этих процедур его можно закладывать.

Вырастет алмаз или нет, зависит даже от теплоты рук работников — Технология производства очень «капризна», — добавляет Максим Наумович. — Алмаз может вырасти большим, может — маленьким, хорошим или плохим, а то и совсем не растет. Все зависит от десятка факторов: от рук инженера, который собирает кубик, от того, как он просушит его, правильно ли пропитает, — вплоть до температуры в цеху и качества графита. Как-то в странах Балтии тоже пытались наладить производство. Закупили оборудование, а алмазы не росли. Оказалось, вырастить алмаз — это не просто включить рубильник.

Через три дня кубик вынимают из БАРСа, разбивают и достают небольшую болваночку, на которой может виднеться край кристалла. Болванку бросают в колбу и заливают «царской водкой» (три порции соляной кислоты и одна азотной). Колбы ставят в специальный шкаф и нагревают, чтобы реакция

пошла быстрее.

— При нормальных условиях через два часа металлы растворяются и остается только алмаз, — говорят в лаборатории. — Потом мы извлекаем алмаз, промываем его и опускаем в хромовую смесь.

Так убирают графит и получают уже чистый алмаз. Его взвешивают, упаковывают и передают на аутсорсинг — на огранку в российскую компанию (свободных специалистов по огранке в Беларуси нет, а учить новых пока

дорого).

— От первоначального веса алмаз может потерять 30—60%. Все зависит от наличия включений и чистоты камня, — добавляют на производстве. — Кроме того, в половине всех синтезов гарантированно получаются высококачественные камни для огранки и установки в изделие — это 220 камней в месяц. Еще в 20% случаев получаются камни чуть более низкого качества.

— Для работы пока достаточно, но для развития этого маловато. Вот бьемся над этой задачей, — Максим Наумович показывает образцы алмазов. — Мы сертифицировали наши камни в Международном геммологическом институте в Антверпене. Экспертное мнение таково: наши камни ничем не отличаются от натуральных по всем своим химическим и физическим характеристикам. Здесь точно же такие показатели по прочности, отсутствию реакции на радиацию и так далее.

В основном предприятие выращивает бесцветные алмазы весом до 1 карата, получая бриллианты в 0,2—0,3 карата. Такие камни идут в основном на серьги и кольца. Кристаллы можно и облагораживать: придавать лимонный, черный, красный и другие цвета. Но на предприятии говорят, что белорусы

предпочитают классику.

«Индусы стали просить делать ритуальные алмазы из праха умерших» Узнав про невысокие по мировым меркам цены на белорусские камни, на предприятие позвонили индусы с необычной просьбой: делать ритуальные

камни.

— Они хотят сохранять память о своих кремированных родственниках в таком виде. По сравнению с британской компанией, которая вплотную занимается подобным производством, наши алмазы выходили в пять раз дешевле, — объясняет директор.

— Работать с прахом умерших мы не решились, а вот технологию получения алмаза из волос отработали. Да, алмазы можно получить из волос. Мы получаем из них углерод, а дальше работаем по той же схеме. Технологию мы опробовали, выпустили уже 12 таких камней. Правда, пока массовое внедрение этой темы — следующий этап работы для нас. И в этой теме

большой потенциал для науки.

Но все же основной упор компания делает на собственное ювелирное производство. Ювелирный цех хоть и небольшой (9 человек), но потенциально там могут производить до 5 тыс. единиц в месяц. На прошлой неделе большая партия белорусских бриллиантов поступила в магазины.

— Наши изделия обходятся на 20—30% дешевле изделий с натуральными камнями, а сами синтезированные бриллианты стоят и вовсе вдвое дешевле натуральных. К примеру, отпускная цена на готовое изделие с бриллиантом в 0,15 карата составляет 300 рублей, с камнем в 0,25 карата будет стоить 600 рублей, — директор показывает образцы изделий.

В основном это помолвочные кольца. Максим Наумович говорит, что в планах есть и серьги, и запонки, и серебро с бриллиантами, и даже арт-серия в экостиле.

— В Европе синтезированные алмазы набирают популярность. Считается, что они более экологичны, чем добытые из недр земли. И это правда. Тем более что по свойствам они не уступают природным, — рассуждает он и делится планами: укрепиться на ювелирном рынке, открыть фирменный магазин с ценами на 40% ниже рыночных и многое другое.

— Есть цель сделать наши бриллианты доступным белорусским брендом. А глобальная задача — за счет полученной прибыли дальше развивать научные

технологии в этой сфере, — добавляет Максим Борд.

maxpark.com

1.4. Синтетические алмазы

Алмаз, так же как и графит, по своему химическому составу пред­ставляет собой чистый углерод. Они являются полиморфными модифика­циями одного и того же элемента, однако свойства их резко различаются. Это объясняется различием их кристаллических решеток.

Алмаз был известен в далеком прошлом, широко применяется в на­стоящем, велики перспективы его использования в будущем. С развитием техники, когда возникла необходимость в новых видах минерального сы­рья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время су­ществование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовления тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порош­ки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что ос­новано прежде всего на их чрезвычайно высокой твердости. Б последние годы все больше привлекают внимание другие исключительные свойства алмаза: его.электрические свойства при использовании в качестве полупро­водников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать нако­пителем и хранителем обширной информации.

Плотность алмаза 3,513 г/см3, микротвердость 100,6 ГПа, модуль уп­ругости 825 ГПа, удельное электросопротивление 1012 - 1014 Ом-см. Кроме углерода в кристалле алмаза всегда присутствует некоторое количество примесей, составляющих не более десятых долей процента. Основные хи­мические элементы - примеси в алмазе: азот, кислород, водород, Fe, Ti, Mn, Si,Al.

Как известно, основные факторы, способствующие образованию ал­мазов - высокие давления и температура, которые имеют место в земных недрах на большой глубине.

Искусственные алмазы начали получать в целом ряде стран в сере­дине 50-х годов XX века. Внедрение синтетических алмазов избавило от необходимости дробить большую часть природных алмазов для изготовле­ния порошков, паст и абразивного инструмента. Выпускаются синтетиче­ские алмазы марок АСО, АСР, АСВ, АСК, АСС, САМ, АСБ и АСПК, а также микропорошки на основе синтетических алмазов АСМ и АСН разме­ром от 1 до 630 нм.

Применяются синтетические алмазы главным образом для изготов­ления различных видов абразивного, лезвийного и бурового инструмента. Важнейшими областями применения алмазных инструментов являются об­работка инструментов и деталей машин из металлокерамических твердых сплавов, бурение геологических и эксплуатационных скважин в твердых и абразивных породах, обработка изделий из гранита, мрамора и др. Наибо­лее широко порошкообразные синтетические алмазы применяются для из­готовления шлифовальных кругов, предназначенных для доводки и заточки твердосплавного металлорежущего инструмента.

В настоящее время известны три метода синтеза алмазов:

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким статическим давле­нием и температурой в .течение времени, измеряемого по крайней мере не­сколькими секундами; .

в области термодинамической стабильности алмаза воздействи­ем на исходный углеродсодержащий материал высоким динамическим дав­лением и температурой в течение времени, измеряемого микросекундами и долями микросекунд;

в области термодинамической стабильности графита, осущест­вляемой при атмосферном и меньшем давлениях и высокой температуре эпитаксиальным наращиванием алмаза на затравках.

Основная масса синтетических алмазов производится во всем мире по первому методу, т.е. при высоких статических давлениях. Отрицатель­ной чертой второго метода является кратковременность действия высоких давлений и температур, из-за чего зародившиеся кристаллы новой фазы лишены возможности длительного роста и образуют поэтому весьма мелкие частицы.

Третий метод получения алмазов требует очень точного соблюдения условий проведения процесса. В противном случае на поверхности затра­вочных кристаллов будет образовываться как алмаз, так и графит, а затем графит покроет всю поверхность, и рост алмазной фазы прекратится.

Рациональное сочетание трех условий, необходимых для синтеза ал­мазов (температуры, давления и наличия определенной среды) лежит в ос­нове методов производства синтетических алмазов при высоких статиче­ских давлениях, используемых во многих странах мира.

Многочисленные исследования отечественных и зарубежных уче­ных в области синтеза алмазов позволили предложить механизм превраще­ния графита в алмаз, который подробно описывается в различных литера­турных источниках и объясняется перестройкой связи электронной конфи­гурации sp в sp3.

Как уже было сказано выше, для синтеза алмазов используются уг-леродсодержащие материалы: стеклоуглерод, кокс, синтетические смолы и, конечно, графит. Однако следует знать, что при синтезе алмазов исходное сырье обязательно проходит стадию графитации. Углеродсодержащее ве­щество до термообработки должно быть максимально однородным по хи­мическому составу. Кроме того, распределение областей когерентного рас­сеяния (ОКР) по размерам должно быть достаточно узким.

Нецелесообразно использовать в качестве исходного углеродсодер-жащего вещества сажу, так как она очень мелкодисперсна. Это затрудняет набивку камер аппаратов высокого давления.

На практике в технологии синтеза алмазов используются определен­ные марки графита МПГ-6, ГМ-ОЗОСЧ, МГ-ОСЧ и т.д. В этом случае обра­зуются алмазы с высоким выходом и хорошего качества. Качество синтези­рованных алмазов определяется их размерами и твердостью.

Поскольку синтез алмазов протекает при высоких давлениях и тем­пературах, то необходимо иметь надежные аппараты для твердофазного синтеза, в которых достаточно длительное время можно поддерживать и высокие давления, и температуры. Нужно уметь измерять такие давления и температуры, определять степень их однородности в реакционной зоне.

Синтез алмазов проводится в специальных камерах, изготовленных из высокопрочных материалов. Такими материалами являются твердые сплавы на основе карбида вольфрама и кобальта. Подъем температуры в подобных аппаратах осуществляется пропусканием электрического тока через нагревательное устройство.

Конструкции камер высокого давления, где создаются температуры от 727°С до 2227°С весьма различны. Среди множества аппаратов такого рода рассмотрим кратко три вида наиболее распространенных конструкций: многопуансонный аппарат, аппарат типа «цилиндр - поршень» и аппарат типа «наковальня с лункой».

Представителем первого вида является тетраэдрическая установка схема которой представлена на рис. 1.14. Камера состоит из четырех пуан­сонов с усеченными трехгранными концами. Торцы этих пуансонов имею: вид равносторонних треугольников и ограничивают тетраэдрический объ

Рис. 1.14. Схема тетраэдрического аппарата высокого давления; а -— схема расположения 4 пуансонов; б — установка в

. сборе, верхний пуансон удален

С помощью четырех гидравлических прессов, симметрично распс ложенных в пространстве, пуансоны двигаются вдоль своей оси, образу рабочий -объем. В него помещается контейнер из рабочего вещества, вь: полненный в виде тетраэдра.

Рабочее вещество - это вещество, посредством которого передаете давление во всех установках, где проводятся высокотемпературные иссж давания при высоких давлениях. Оно должно быть твердым телом с мало сжимаемостью и удовлетворять следующим условиям:

иметь высокую температуру плавления и малую теплопровод ность;

не проводить электрический ток; быть химически инертным;

быть достаточно пластичным, чтобы с его помощью можно бь ло получать более или менее равномерное (квазигидростатическое) давл( ние в определенном объеме.

Нагреватель (чаще всего графитовая трубка) заполняется реакцию] ной шихтой и вкладывается в тетраэдрический контейнер так, чтобы конц нагревателя выходили из противоположных ребер тетраэдра. При сближ-нии пуансонов они сжимают тетраэдрический контейнер. Часть рабоче) вещества вытекает в зазоры между пуансонами, образуя уплотняющие пр< кладки. Электрический ток для создания нужной температуры подводится нагревателю через пуансоны, соприкасающиеся с нагревательным устрой­ством.

В настоящее время для изготовления контейнеров, работающих при высоких давлениях и температурах (10 ГПа и 2700°С), применяют в основ­ном четыре вещества: тальк или стеатит 3MgO-4SiOrh3O, пирофиллит Al2O3-4Si02-h3O, литографский камень 95% СаСОз + 5% смеси 8Ю2, А1203, Fe203 и катлинит - красную кремнистую сцементированную глину, место­рождения которой находятся в США. Они несколько различаются между собой по механическим свойствам и по термоустойчивости.

Контейнеры могут изготовляться как из блоков соответствующих минералов, так и прессованием порошков из этих минералов с употребле­нием различных связок (жидкое стекло, бакелит и др.).

Описанная тетраэдрическая камера требует приложения к ней уси­лия прессового устройства по четырем осям, что вызывает немалые трудно­сти, поэтому создают камеры, где сжатие осуществляется одним поршнем от какого-либо прессового агрегата. Ввиду этого значительное распростра­нение получили аппараты типа «цилиндр - поршень», так называемые белт-аппараты (belt1 - пояс). Схема аппарата показана на рис .1.15.

ис

1.15. Схема аппарата типа белт: 1 - - пуансон, 2 - - кон­тейнер

Рис. 1.16. Схема камеры высокого давления с поддержи­вающими кольцами (на­ковальня с лункой): 1 -пуансон, 2 - - стальное кольцо, 3 — контейнер, 4 — образец, 5 — зазор

Основными частями его являются два конических пуансона (1) из твердого сплава, на которые в несколько слоев надеты стальные бандажи. Их торцы входят в полый цилиндр из твердого сплава, также упрочненный набором бандажей. Внутрь цилиндра помещается цилиндрический контей­нер из рабочего вещества (2), в котором находится нагреватель с реакцион­ной шихтой. Нагревателем является трубка из электропроводящего мате­риала, ось нагревателя совпадает с осью контейнера.

Вся установка помещается в гидравлический пресс. При сдвигании пуансонов рабочее вещество пластически деформируется, часть его затека­ет в зазоры между цилиндром и пуансоном и надежно запирает камеру сжа­тия. Благодаря образующимся прокладкам из рабочего вещества пуансоны оказываются электрически изолированными от цилиндра.

Нагрев осуществляется пропусканием электрического тока через на­греватель, соприкасающийся с пуансонами, к которым подсоединяются электроконтакты от источника тока.

В установке типа «белт» возможно получать давления около 20 ГПа и температуры порядка 2700°С и можно иметь большой реакционный объ­ем. Однако детали данной конструкции весьма сложны в изготовлении, и эксплуатация ее требует высокой квалификации персонала. Поэтому в СССР была разработана более простая конструкция типа «наковальни с лункой», которая получила широкое распространение не только в лабора­торных исследованиях, но и в промышленности.

На рис. 1.16 представлена схема описываемого аппарата в разрезе. Аппарат включает два одинаковых пуансона из твердого сплава (1), каждый из которых в торце имеет центральное углубление (лунку) в виде сегмента сферы, окруженное поверхностью, обработанной на конус. По боковой по­верхности каждый пуансон (1) скреплен стальным кольцом (3). Между тор­цевыми поверхностями пуансонов помещается контейнер (2), выполненный из соответствующего рабочего вещества. Образец (4) собирается вместе с нагревательным элементом и вставляется в полость контейнера. Цифрой (5) обозначен зазор между обработанными на конус, периферическими участ­ками поверхности пуансонов.

Высокие давление (до 7 ГПа) и температура (до 2200°С) получаются следующим образом.. Образец (углеродсодержащий материал) вместе с на­гревательным элементом (4) помещается в контейнер (2), который собран­ным устанавливается в камеру высокого давления, образованную обращен­ными друг к другу торцами пуансонов (1). Камера в сборе закладывается в гидравлический пресс. При сближении пуансонов периферическая часть контейнера (2) постепенно деформируется и заполняет зазор (5). Пластиче­ское течение материала контейнера (2) прекращается, когда при возраста­нии сжимающего усилия пресса достигается необходимая величина давле­ния в камере. Электрическая мощность, необходимая для нагревания образ­ца.(4). подается на, нагреватель через пуансоны (1), для чего один из пуан­сонов должен быть электрически изолирован от остальных частей аппара­туры.

• В данном случае твердосплавная деталь имеет линзообразное углуб­ление и называется «наковальней с лункой» (НЛ), а контейнер напоминает формой чечевицу. Для создания более высоких давлений камера типа НЛ была изменена. На конусной поверхности пуансона были сделаны кольце­вые канавки в виде разрезанного по большому диаметру тора (рис. 1.17).

Это не влияет на принцип действия камер, но значительно повышает стой­кость твердосплавной детали к разрушению. В таких аппаратах можно дос­тичь давлений в 13 - 14 ГПа. Конструкция получила наименование «нако­вальня с лункой и тороидом (НЛТ)», а контейнер для нее - «тороид» (рис. 1.18).

Рис. 1.17. Схема камеры высокого ис 1.18. Осевой разрез контейнера давления типа тороид типа тороид

Важным обстоятельством, сильно влияющим на характер протека­ния синтеза алмазов в камерах высокого давления с твердой средой, являет­ся возникновение градиентов температуры и давления в реакционной зоне, что усложняет технологию процесса. Истинная величина температуры мо­жет быть определена непосредственно в камере синтеза термопарой. В диа­пазоне температур до 930°С применяются платино-платинородиевая и для более высоких температур - вольфрам-рениевая термопары.

Прямой синтез алмазов из углеродсодержащих веществ без добавки каких-либо способствующих образованию алмаза веществ (катализаторов, растворителей) протекает при очень высоких давлениях и температурах. При каталитическом синтезе удается снизить температуру и давление более чем в 2 раза (4,1 - 4,5 ГПа, 1150 - 1200°С), поэтому каталитический синтез алмазов сейчас является основным. Катализаторами являются: марганец, хром, тантал, а также сплавы, образованные этими элементами с металлами, которые каталитически неактивны для данного процесса. Кроме того, ката­лизаторами синтеза алмазов являются сплавы переходных элементов Ti, Zr, Hf, V, W, Mo, Nb с металлами Си, Ag, Аи. Превращение графита в алмаз происходит при хорошем контакте между ним и жидким (расплавленным) металлом.

Следует отметить, что в синтетических алмазах, получаемых с по­мощью катализаторов, всегда наблюдаются различные включения.

Нельзя не сказать о возможности получения алмаза из газовой фазы при низких давлениях, т.е. о так называемом эпитаксиальном синтезе веще­ства.

Наряду с получением алмаза в условиях, когда он является термоди­намически устойчивым веществом (при высоких давлениях), алмазы можнс синтезировать в области его неустойчивости, т.е. при относительно низких давлениях. Для этого проводят термическое разложение углеродсодержа-пщх газообразных веществ, например метана, ацетилена, оксида углерода и др. В реакционный сосуд предварительно вводят кристаллы алмаза. Если имеется грань кристалла алмаза, вблизи которой концентрация атомов уг­лерода в виде пара превышает соответствующую равновесную, то избыток атомов углерода будет осаждаться на этой грани, воспроизводя кристалли­ческую структуру алмазной решетки. Процесс этот очень медленный. Кро­ме того, рабочие условия благоприятствуют образованию на поверхности подложки графита, который нужно периодически удалять с нее. Удельная производительность таких установок невелика, и сам процесс пока не на­шел промышленного применения.

В области термодинамической устойчивости алмаза его можно по­лучать в виде алмазной пыли из углеродсодержащих веществ во взрывной волне. Этот вариант синтеза следует отнести к методу динамического по­гружения.

studfiles.net

Производство искусственных алмазов

  • 1 Искусственные алмазы
  • 2 Производство
  • 3 Виды синтетических алмазов

Алмазы знакомы человечеству уже очень давно. Их чарующая красота не оставляла без внимания ни единого человека, и именно такая популярность послужила тому, что люди решили создать искусственные алмазы. Женщины всегда стремились иметь украшения из этого драгоценнейшего камня, впрочем, как и некоторые мужчины. Кроме как на ювелирных изделиях алмазы использовались еще во многих других аспектах. Алмазами пользовались в таких отраслях, как наука, техника и медицина. Для каждой из отраслей этот материал имел свою ценность. Ввиду того, что в природе этого высокопрочного материала было совсем не много, а его свойства были так нужны людям, и начинались попытки создать алмаз в домашних условиях.

Искусственные алмазы

Появление искусственного алмаза относят к тысяча девятьсот девяносто третьему году. Материал, который был получен учеными, отправился на экспертизу в Соединенные штаты Америки, что бы его изучили и дали свое заключение.

Камень, который люди сделали самостоятельно, получился самым твердым из всех камней, что сейчас существуют. Искусственный алмаз имел превосходный внешний вид, и во многом был даже лучше оригинала. Настоящие алмазы могут иметь трещинки, мутные участки на самом камне, тогда как его искусственная модификация кристально чиста. Полученный камень стал даже лучше своего оригинала.

Что касается свойств натурального камня, то они имеют благоприятное влияние на человека, он поможет при недобрых человеческих взглядах и мыслях, успокоит нервы самому носителю камня. Что касается искусственной вариации, то она также имеет положительное воздействие на человека, носящего камень, но его может быть немного меньше, ведь камень все же создан искусственно.

Ни смотря на то, что оба камня практически идентичны по внешним показателям, но вот их цена существенно отличается. Ввиду того, что синтетический алмаз легче обработать и придать ему нужную форму, то и усилий на это нужно меньше. Меньшее количество затраченных сил и ресурсов, более филигранная работа на выходе, все это обеспечивает достаточно высокую стоимость товара, но в разы ниже, чем стоимость природного камня.

Благодаря тому, что синтетические камни более прочные, именно их используют для резки и шлифовки разнообразных поверхностей. Многие детали, которые должны резать, пилить и прочее, в своем составе могут иметь алмазные насечки из искусственного камня. Даже в изготовлении микросхем часто пользуются искусственными алмазами, которые выполняют роль полупроводника.

Основной категорией, которая использует искусственно созданные алмазы, являются  ювелиры, которые делают огромное количество украшений с использованием небольших, и очень маленьких искусственных алмазов. Такие изделия невозможно было бы создать при выборе натурального сырья. Кроме ювелирной промышленности активно используют такие материалы при создании разного рода микросхем и чипов в компьютерном оборудовании. Не последнее место занимают и те организации, которые предлагают услуги бурения, ведь они тоже используют синтетические алмазы в своих работах.

Особо стоит сказать об использовании искусственного камня в медицине. Относительно недавно было придумано универсальное средство, использовать алмаз для того, что бы проводить через него лазерный луч. При помощи таких лучей сейчас делают большое количество разнообразных процедур, в том числе и операций. Использование лазерных технологий позволяет максимально точно выполнять все действия, и при этом добиваться максимального результата.

В связи с тем, что популярность использования искусственного алмаза столь высока, и объемы его производства резко увеличивается, На сегодняшний день каждый год производится примерно пять миллиардов карат этой продукции.

Исследования этого камня не прекращаются ни на мгновение, ученые стремятся выявить потенциал данного материала, и максимально эффективно его использовать, ведь по многим характеристикам он в разы превышает работоспособность, износоустойчивость, теплопроводимость и прочие характеристики существующих ныне материалов.

Производство

Настоящий алмаз имеет вид чистого углерода, у которого кристаллическая решетка определенной формы. Алмаз получается вследствие переходов углерода из жидкого состояния в твердое. Пытаясь создать искусственные камни, люди сперва изучили причины появления этих камней в природе, и на основе этого создали свои модели.

Способов, при помощи которых создают искусственные алмазы есть определенное количество, мы рассмотрим некоторые из них.

Первым из них стоит рассмотреть такой, который очень похож на создание алмаза в природе, а именно это происходит тогда, когда высокая температура сочетается с высоким давлением. Создают синтетические камни в специальных прессах, где уровень давления имеет высокую степень. В прессе имеется цилиндр, в котором есть отверстия, через которые циркулирует хладоагент и вода, которая идет с определенным давлением. В корпусе также есть камера, состав которой это карбид талант, и в нее кладут графитовую заготовку. Под влиянием всех необходимых процессов именно этот графит становится алмазом. Ток в камеру подается при помощи шин, сделанных из меди. Сам по себе алмаз формируется не сразу, для этого требуется некоторое количество этапов.

Когда цилиндр установлен в пресс, в него подают воду, после чего графит сжимается при помощи давления воды. Следующий этап предполагает подачу хладоагента, после чего вода замерзает до минус двенадцати градусов. Эта процедура также способствует процессам, при которых графит сжимается еще больше. На следующем этапе подается разряд тока длительностью в 0.3 секунды. Только после этого начинают размораживание люда, и вместо первоначального элемента, получают уже алмазы.

Такие камни отличаются грязным оттенком, а структура их пористая. Они имеют тетраэдрическую форму. Такие камни имеют плотность намного выше природных аналогов, а сфера использования их – это технические нужды человека.

Что касается второго способа получения синтетических камней, то он проще по технологии, но более сложный касаемо оборудования. Этот вариант заключается в том, что кристаллы алмаза наращиваются, находясь в среде метана. Для таких процедур нужно накалить кристаллы алмаза так, что бы их температура была более тысячи градусов и обдуть их при помощи метана. Давление во время этой процедуры не слишком большое, нужно оно для того, что бы в процесс не проникал атмосферный кислород. Нагревая кристалл, нужно не забывать, что при температуре в тысячу двести градусов он перейдет в состояние графита. Наращивание кристаллов осуществляется во время того, как алмаз раскален, и на него добавляют атомы углерода в кристаллическую решетку камня.

Такой способ ведет к получению кубически сложенных камней, которые в значительной мере отличаются от природного варианта. Цветовая гамма таких камней – черная, что в корне отлично от естественного алмаза. Твердость как полученного, так и натуральных камней, практически одинаковая. Готовый продукт является карбидом, но ввиду его прочности и материала из которого он изготовлен, называют его алмазом.

Следующим способом, при котором можно получить алмаз является вариант со взрывом. Этот вариант нужен для того, что бы получить алмазную пыль, которую используют для абразивов и заточного камня. Взорвать можно как обычно вещество, предусмотренное для таких манипуляций, так и взорвать проволоку при большом импульсе тока. Для того, что бы получить необходимую детонационную волну, нужно, что бы была мембрана, которая будет рваться со скоростью звука. Графит подогревается на поверхности и ждет прохождения волны детонатора, после чего из него остается лишь горстка кристалликов алмазов. Такие алмазы совершенно прозрачны, они совсем маленькие, по форме тетраэдрические, а по прочности практически такие же, как природные камни.

В том случае, если полученный материал снова подвергнуть той же процедуре, то получатся кристаллы с разным размером и весом, при этом цвет их будет не чистым и прозрачным, а мутным. Прочность после такой процедуры сильно страдает, кристаллы становятся хрупкими.

Следующим вариантом того, как можно получить искусственный алмаз является метод, при котором используется катализатор. При помощи катализатора удается сильно уменьшить температуру и силу давления. Искусственные кристаллы создаются между графитом, который раскалили и катализатором, где есть определенный слой, идеально подходящий для образования камней, он представлен в виде пленки металла. Наиболее подходящим катализатором для этого считается железо, а лишь после него идет никель, родий, палладий и платина. Кристаллы продолжают расти до того момента, пока пленочка катализатора соприкасается с графитом. Алмазы, которые получают таким вариантом, имеют маленькие размеры. Эти камешки получают при условии низкой температуры, что отличается от предыдущих вариантов.

Форма готовых алмазов квадратичная, цветовая гамма черная, а прочность либо такая же, как у настоящих алмазов, либо даже лучше них. Если же процедура проходит при условии высокой температуры, то результат совершенно иной, форма кристалла октаэдрическая, цветовая гамма может быть различной, это и желтые, синие, зеленые, белые, прозрачные и непрозрачные кристаллы. Они также имеют прочность, такую же, или превосходящую настоящие алмазы. Катализаторы имеют прямое влияние на то, какой будет цвет у готовой продукции. Если примешивать никель, то готовый камень будет иметь оттенки зеленого, если же использовать бериллий, то цвет станет синеватым.

Производство искусственных алмазов процесс весьма трудоемкий, но оно того стоит, ведь на выходе получается продукт, который можно использовать в самых разных сферах жизни человека, что на самом деле, бесценно.

Виды синтетических алмазов

Искусственные алмазы, производство которых может иметь разнообразный характер, по своей сути сводится к тому, что бы получить плотный камень, красивой или же заданной формы, для определенных нужд.

На современном этапе разновидностей таких алмазов существует определенное количество, это и фианиты, и муассаниты, также стразы, сегнетоэлектрики, рутилы, фабулиты, церусситы. Больше всего похож на настоящий алмаз – фианит или же цирконий. Фианиты весьма интересные камни, они также весьма прочные, хорошо преломляют свет, и кроме того, они с большой долей верности имитируют настоящие алмазы.

Фианит имеет очень широкое распространение в ювелирном деле, потому как изделия из него с первого взгляда не отличишь от тех, в которых стоит настоящий алмаз. По качеству, наиболее ярким представителем аналогов настоящих камней является муссанит. Физические показатели в точности повторяют показатели настоящего алмаза, внешние свойства муссанита даже в какой-то степени превосходят алмаз, но вот по твердости он значительно уступает оригиналу. Очень популярными являются стразы, которые сделаны из свинцового стекла. Эти камешки имеют потрясающий блеск, которых походит на настоящие камни.

Вариантов синтетических алмазов существует не мало, и каждый нашел свое применение. Хорошо, что человек сумел из природного материала создать аналоги, в чем-то даже превышающие оригинал.

alloberegi.ru

Алмаз искусственный: название, производство

Алмазы привлекали человечество еще с давних времен. Необычайная красота этих камней стала причиной их использования для создания разных украшений. Однако позже люди выявили и другие полезные свойства алмазов – их уникальную прочность и твердость. Для обеспечения потребностей производства природа не создала много этого материала, поэтому у людей возникла идея – изготовлять алмазы искусственным путем.

Ценность алмазов

Алмаз считается уникальным камнем, обладающим редким сочетанием важных характеристик: сильная дисперсия, большая теплопроводность, твердость, оптическая прозрачность, износостойкость. Из-за своих физико-механических свойств алмазы высоко ценятся не только ювелирными экспертами, но и широко применяются в разных отраслях промышленности. Так, этот драгоценный камень используют в медицине, оптике и микроэлектронике.

Но в полной мере удовлетворить производственные потребности чистыми природными алмазами очень сложно и довольно дорого. По этой причине человечество начало задумываться над тем, как сделать искусственный алмаз. Синтетический камень должен был не только обладать важными свойствами настоящего алмаза, но и иметь более совершенную кристаллическую структуру, что очень важно для высокотехнологических областей.

Как возникли синтетические алмазы

Потребность в создании синтетического камня возникла очень давно. Но на практике осуществлена лишь в XX веке. До этого времени ученые не могли придумать технологии изготовления алмазов, хотя сумели установить, что они являются родственниками с обыкновенным углеродом. И через несколько десятков лет был создан первый синтетический алмаз, который получили из графита под воздействием высокой температуры и давления путем фазового перехода. Именно с этого момента началось производство искусственных алмазов, которые сегодня применяются во многих элементах разного оборудования и инструментах.

Технологии производства алмазов

В наше время для получения синтетического камня используют несколько технологий, каждая из которых имеет свои особенности. Самая надежная, но наиболее дорогостоящая технология заключается в производстве алмаза из кристаллического углерода, который помещают для обработки в специальный пресс. Сначала на обрабатываемый материал мощными насосами подается вода. Таким образом создается высокое давление. Затем вода замерзает под действием хладагента, в результате чего давление увеличивается до 10 раз. На последнем этапе камера, в которой находится углерод, подключается к электрическим шинам и подается на несколько долей секунды мощный ток. Под одновременным воздействием температуры и давления происходит преобразования графита в твердый камень. После этой фазы пресс размораживают, сливают жидкость и достают готовый искусственный алмаз.

Выращивание алмаза метаном

Еще используют более простую технологию производства синтетического камня – метод взрыва, который позволяет нарастить искусственный кристалл под действием метана. Очень часто производство искусственных алмазов происходит по двум технологиям. Дело в том, что в первом случае удается получить наивысший процентный выход алмазов, но они будут очень маленькими. Вторая технология позволяет существенно нарастить полученный синтетический камень с помощью обдувания метаном под воздействием температуры около 1100 ºС. Метод взрыва дает возможность получить искусственный алмаз любой величины.

Виды искусственных алмазов

В наше время производят много разновидностей синтетических алмазов: фианит, муассанит, страз, сегнетоэлектрик, рутил, фабулит, церуссит. Наиболее совершенной подделкой алмаза считается фианит, или кубик циркония. Он являет собой диоксид циркония. Поэтому многим неоднократно приходилось слышать, как называется искусственный алмаз цирконом. Хотя он не имеет никакого отношения к натуральному дорогостоящему камню.

Фианит характеризуется большой твердостью, высокой степенью дисперсии и преломления. Благодаря своим свойствам этот камень отлично имитирует настоящий алмаз и широко используется в ювелирной промышленности. Даже эксперты невооруженным глазом практически не могут отличить подделку от оригинала, поскольку они играют одинаково.

Самым качественным аналогом алмаза считается муассанит. У него такие же физические свойства, как у натурального камня, а по оптическим показателям он даже лучше. Единственный его недостаток – он уступает в твердости.

Особой популярностью пользуются стразы, изготовленные из свинцового стекла, состоящего из окиси свинца. Благодаря своему составу эти камни потрясающе играют на свету и имеют блеск, идентичный блеску алмазов.

Где применяются синтетические алмазы

Искусственный алмаз широко используется ювелирными заводами для изготовления роскошных украшений, которые не только выглядят красиво, но и весьма доступны по цене. Изделия с поддельными камнями смотрятся не хуже и отлично носятся.

Также выращивание искусственных алмазов является неотъемлемой частью современной промышленности. На их основе производятся сверхпрочные инструменты: шлифовальные круги, алмазные пилы, полирующие диски, долота, сверла, скальпели, ножи, разные резцы и пинцеты. Техника и оборудование, изготовленные из алмазного материала, позволяют обрабатывать наиболее прочные сплавы и сырье. Кроме того, алмаз обеспечивает максимальную точность в машинах и приборах.

Как создать искусственный алмаз в домашних условиях

Некоторые эксперты утверждают, что вырастить синтетический алмаз возможно в домашних условиях. Но самостоятельное изготовление искусственных алмазов потребует немало усилий и затрат времени. Мы расскажем, как вырастить минерал из соли, внешне отдаленно напоминающий алмаз.

Итак, для создания такого камня понадобится кипяченая вода, поваренная соль, химическая посуда, чистый лист бумаги и лабораторный фильтр. Сначала следует приготовить маленький кристалл. Для этого нужно наполнить химический стакан на 1/5 часть солью, залить наполовину теплой водой и перемешать. Если она растворилась, значит, нужно досыпать еще немного. Соль нужно добавлять до тех пор, пока она не перестанет растворяться. Затем раствор профильтровать в другую посуду, в которой и будет расти камень, и накрыть бумагой. Все время нужно контролировать уровень раствора. Камень не должен оказаться в воздухе. Если раствор испарился, нужно приготовить новый и долить.

Люди, которые делали такие опыты, утверждают, что на протяжении недели домашний алмаз искусственный должен заметно подрасти.

Стоимость искусственного алмаза

В современном мире синтетические камни заняли отдельный сегмент рынка ювелирных украшений. Получение искусственных алмазов постоянно усовершенствуется. Ученые изобретают новые камни, которые мгновенно получают массовую популярность, а более старые утрачивают спрос и постепенно исчезают с рынка. Например, в середине XX века для имитации алмазов в украшения вставляли искусственный рутил. Затем его заменили на фианит. А в 90-х гг. все предыдущие имитации бриллианта вытеснил муассанит.

Цены на искусственный алмаз зависят от размера, огранки и технологии производства. Многие люди ошибочно считают, что синтетические камни – это обычное стекло, и не видят в них никакой ценности. Но на самом деле такие алмазы часто стоят немалых денег, а некоторые из них являются довольно редкими. Так, иные разновидности искусственного алмаза могут стоить больше, чем природные аналоги.

Среди синтетических алмазов наиболее популярными считаются фианиты разного цвета. Их средняя стоимость за карат в ограненном виде колеблется от 1 до 5 долларов США. А известный алмазный аналог муассанит стоит намного дороже – 70–150 долларов США за карат.

Значимым факторов формирования цены на камни является цвет. Так, стоимость алмаза желтого цвета составляет 40–50 долларов за 0,2 карата, но за камень оранжево-розовой окраски в зависимости от размера придется заплатить около 3000 долларов.

Мировые лидеры

В течение последних лет мировыми лидерами по производству синтетических камней считаются Китай, Япония, США и Россия. Наиболее активно развивает это направление Китай, постоянно изобретая новые технологии синтеза.

autogear.ru


Смотрите также